

İSTANBUL OKAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK TEMEL BİLİMLERİ BÖLÜMÜ

2019 - 20

MATH117 Mathematics for Architecture – Homework 2 Solutions N. Course

- 6. (a) \mathbb{R} . Since $x^3 x^2 + x 1$ is a polynomial, it is defined on all of \mathbb{R} .
 - (b) $(-\infty, 2]$. The function $\sqrt{4-2x}$ is only defined if (4-2x) is positive, i.e. if $x \le 2$.
 - (c) $(-\infty, -3) \cup (-3, 3) \cup (3, \infty)$. The function $\frac{7}{x^2-9}$ is defined iff its denominator is non-zero that is if $x \neq \pm 3$.
- (7.) (a) $-45^\circ = -\frac{\pi}{4}$
 - (b) $315^{\circ} = \frac{7\pi}{4}$
 - (c) $10^{\circ} = \frac{\pi}{18}$
 - (d) $\frac{\pi}{9} = 20^{\circ}$
 - (e) $\frac{5\pi}{4} = 225^{\circ}$
 - (f) $-\frac{3\pi}{2} = -270^{\circ}$
 - 8. (a) $(x,y) = (r\cos\theta, r\sin\theta) = (2\sqrt{3}\cos\frac{2\pi}{3}, 2\sqrt{3}\sin\frac{2\pi}{3}) = (-\sqrt{3}, 3).$
 - (b) The are many possible answers: We can calculate that $r = \sqrt{x^2 + y^2} = \sqrt{2}$ and $\theta = \tan^{-1} \frac{y}{x} = \tan^{-1}(-1) = -\frac{\pi}{4}$. So one possible answer is $(\sqrt{2}, -\frac{\pi}{4})$.
 - (c) (1080, 0)

9.

(a) The focus of the parabola $x^2 = -8y$ is (0, -2).

(b) First we write the equation $7x^2 + 16y^2 = 112$ as $\frac{x^2}{4^2} + \frac{y^2}{7} = 1$. We can see that we have $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with a = 4 and $b = \sqrt{7}$. Therefore $c = \sqrt{a^2 - b^2} = \sqrt{16 - 7} = 3$. The foci are at $(\pm 3, 0)$.