

Exercise 21 (Definite Integrals). Find the following definite integrals. The first one is done for you.

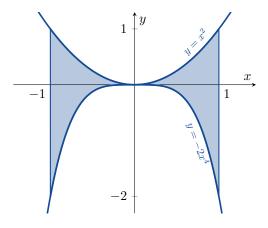
(
$$\omega$$
) Find $\int_{-2}^{0} (2x+5) dx$. solution: $\int_{-2}^{0} (2x+5) dx = [x^2+5x]_{-2}^{0} = (0^2+0) - ((-2)^2+5(-2)) = 0 - (4-10) = 6$.
(a) Find $\int_{0}^{\pi} (1+\cos x) dx$.

(b) Find
$$\int_{-3}^{-1} \frac{y^5 - 2y}{y^3} dy.$$

(c) Find
$$\int_{1}^{2} \left(t^{2} + \sqrt{t}\right) dt$$
.

Exercise 22 (Derivatives). Use the Fundamental Theorem of Calculus to find $\frac{dy}{dx}$ if $y = \int_{\tan x}^{0} \frac{1}{1+t^2} dt$. [HINT: $1 + \tan^2 \theta = \sec^2 \theta$.] **Exercise 23 (The Substitution Method for Indefinite Integrals).** Use a substitution to evaluate the following indefinite integrals. You must show your working.

(a)
$$\int \frac{1}{\sqrt{5x+8}} dx.$$


(b)
$$\int \tan^7 \frac{x}{2} \sec^2 \frac{x}{2} \, dx.$$

Exercise 24 (The Substitution Method for Definite Integrals). Use a substitution to evaluate the following definite integrals. You must show your working.

(a)
$$\int_{2\pi}^{3\pi} 3(\cos^2 x)(\sin x) dx.$$

(b)
$$\int_{1}^{4} \frac{1}{2\sqrt{y}(1+\sqrt{y})^2} dy.$$

Exercise 25 (Area Between Curves). Calculate the area between the curve $y = x^2$ and the curve $y = -2x^4$ for $-1 \le x \le 1$.

I declare that this assignment is entirely my own work. I did not copy from another student and I did not allow anyone to copy from me. Bu ödevin tamamen kendi çalışmamın ürünü olduğunu, başka bir öğrencinin ödevini kopyalamadığımı; başkasının da benim çalışmamı kopyalamasına izin vermediğimi beyan ederim.

SIGNATURE: