## Cep telefonunuzu gözetmene teslim ediniz / Deposit your cell phones to invigilator Page 1 of 3

December 21, 2017 [9:00 am-10:30 am] Math 113/ Final Exam -(- $\alpha$ -)



|                                                                                                                                                 |                                                                                                                                   | STANBUL                                                                     |                          |                       |                                    |         |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------|-----------------------|------------------------------------|---------|
| ur Na                                                                                                                                           | ame / Adınız - Soyadınız                                                                                                          | Your Signature / İmza                                                       |                          |                       | ]                                  |         |
|                                                                                                                                                 |                                                                                                                                   |                                                                             |                          |                       |                                    |         |
| udent                                                                                                                                           | ID # / Öğrenci No                                                                                                                 |                                                                             |                          |                       |                                    |         |
|                                                                                                                                                 |                                                                                                                                   |                                                                             |                          |                       |                                    |         |
|                                                                                                                                                 |                                                                                                                                   |                                                                             |                          |                       |                                    |         |
| rofess                                                                                                                                          | or's Name / Öğretim Üyesi                                                                                                         | Your Department / Bölüm                                                     |                          |                       |                                    |         |
|                                                                                                                                                 |                                                                                                                                   |                                                                             |                          | A                     |                                    |         |
| • Cal                                                                                                                                           | culators, cell phones off and away!.                                                                                              |                                                                             |                          |                       |                                    |         |
| • In order to receive credit, you must <b>snow all of your work</b> . If you do not indicate the way in which you solved a problem, you may get |                                                                                                                                   |                                                                             | Problem                  | Points                | Score                              |         |
| littl<br>wo                                                                                                                                     | e or no credit for it, even if your answer is correc<br>rk in evaluating any limits, derivatives.                                 | t. Show your                                                                | 1                        | 24                    |                                    |         |
| • Pla                                                                                                                                           | ce a box around your answer to each question.                                                                                     |                                                                             | 2                        | 25                    |                                    |         |
| • Use a <b>BLUE ball-point pen</b> to fill the cover sheet. Please make sure that your exam is complete.                                        |                                                                                                                                   |                                                                             | 3                        | 27                    |                                    |         |
| • Ti                                                                                                                                            | me limit is 90 min.                                                                                                               |                                                                             | 4                        | 24                    |                                    |         |
| not wr                                                                                                                                          | ite in the table to the right.                                                                                                    |                                                                             | Total                    | 100                   |                                    |         |
|                                                                                                                                                 |                                                                                                                                   |                                                                             | Total.                   | 100                   |                                    | ]       |
| (a)                                                                                                                                             | 12 Points If it exists, find the limit $\lim_{x \to 0} \frac{2^{\sin x} - 1}{e^x - 1}$                                            |                                                                             |                          |                       |                                    |         |
|                                                                                                                                                 | Colution. The limit leads to the indeterminate                                                                                    | )<br>Honos voine L'Hênital's Dula                                           | wa hawa                  |                       |                                    |         |
|                                                                                                                                                 | solution: The limit leads to the indeterminate - (                                                                                | $\frac{1}{2}$                                                               | we have                  |                       |                                    |         |
| F                                                                                                                                               | $\lim_{x \to 0} \frac{2^{\sin x} - 1}{e^x - 1} \lim_{L'H} \lim_{x \to 0} \frac{2^{\sin x} \cos x(\ln 2)}{e^x} = 2$                | $\frac{2^{\sin 0} \cos 0(\ln 2)}{e^0} = \frac{2^0(1)(\ln 2)}{1} =$          | ln 2                     |                       |                                    |         |
|                                                                                                                                                 | p.652, pr.3                                                                                                                       |                                                                             |                          |                       |                                    |         |
| (b)                                                                                                                                             | 12 Points Evaluate the definite integral $\int_0^{\ln 9} e^{\theta} (e^{\theta}) d\theta$                                         | $\mathrm{e}^{\theta}-1)^{1/2}d\theta.$                                      |                          | X                     | X                                  |         |
|                                                                                                                                                 | <b>Solution:</b> Let $u = e^{\theta} - 1$ . Then $du = e^{\theta} d\theta$ . V<br>$u = e^{\ln \theta} - 1 = 9 - 1 = 8$ . Hence    | When $\theta = 0$ , we have $u = e^0 - e^0$                                 | 1 = 1 - 1 =              | 0 and w               | then $\theta = 1$                  | ln9, wo |
|                                                                                                                                                 | $\int_0^{\ln 9} e^{\theta} (e^{\theta} - 1)^{1/2} d\theta = \int_0^{\ln 9} \underbrace{(e^{\theta} - 1)^{1/2}}_{u^{1/2}} d\theta$ | $\frac{d^2}{du} = \frac{e^{\theta}}{du} \frac{d\theta}{du}$                 |                          |                       |                                    |         |
|                                                                                                                                                 | $=\int_0^8 u^{1/2} du =$                                                                                                          | $\left[\frac{u^{1/2+1}}{1/2+1}\right]^8 = \frac{2}{3}(8^{3/2} - 0^{3/2}) =$ | $\frac{2}{3}(2^{9/2}-0)$ | $=\frac{2^{11/2}}{3}$ | $=\overline{\frac{32\sqrt{2}}{3}}$ | ]       |
|                                                                                                                                                 | p.652, pr.3                                                                                                                       |                                                                             |                          |                       |                                    | L       |
| (a)                                                                                                                                             | 12 Points If $f(x) = 2x^3 + 3x + 1$ , then find the va                                                                            | alue of $\frac{df^{-1}}{dx}$ at $x = 6 = f(1)$ .                            |                          |                       |                                    |         |
|                                                                                                                                                 | Solution:                                                                                                                         |                                                                             |                          |                       |                                    |         |
|                                                                                                                                                 | $\frac{df}{dx} = 6x^2 + 3 \Rightarrow \left[\frac{df^{-1}}{dx}\right]_{x=6} = \left[\frac{1}{\frac{df}{dx}}\right]_{x=6}$         | $= \left[\frac{1}{6x^2 + 3}\right]_{x=1} = \boxed{\frac{1}{9}}$             |                          |                       |                                    |         |

p.83, pr.40

## Cep telefonunuzu gözetmene teslim ediniz / Deposit your cell phones to invigilatorDecember 21, 2017 [9:00 am-10:30 am]Math 113/ Final Exam -(-α-)Page 2 of 3

(b) 13 Points Find the area of the surface generated by revolving the curve  $x = \sqrt{y}$ ,  $2 \le y \le 6$ , about *y*-axis.

Solution: The surface area formula we shall use is  

$$S = \int_{c}^{d} 2\pi x \sqrt{1 + (dx/dy)^{2}} \, dy$$

$$x = \sqrt{y} \Rightarrow \frac{dx}{dy} = \frac{1}{2\sqrt{y}} \Rightarrow \left(\frac{dx}{dy}\right)^{2} = \frac{1}{4y} \Rightarrow S = \int_{2}^{6} 2\pi (\sqrt{y}) \sqrt{1 + \frac{1}{4y}} \, dy$$

$$S = 2\pi \int_{2}^{6} \sqrt{y} \frac{\sqrt{4y+1}}{2\sqrt{y}} \, dy = \pi \int_{2}^{6} \sqrt{4y+1} \, dy \qquad \boxed{u = 4y+1, \quad du = 4 \, dy \Rightarrow}$$

$$= \frac{\pi}{4} \int_{9}^{25} \sqrt{u} \, du = \frac{\pi}{4} \left[\frac{u^{3/2}}{3/2}\right]_{9}^{25} = \frac{\pi}{6} \left[(25)^{3/2} - (9)^{3/2}\right] = \frac{\pi}{6} \left[125 - 27\right]$$

$$\rightarrow S = \left[\frac{49\pi}{3}\right]$$
44, pr.102



3. (a) 13 Points Find the volume of the solid generated by revolving the region bounded by



(b) 14 Points Suppose

$$u(x) = \begin{cases} 1, & -2 \le x < -1\\ 1 - x^2 & -1 \le x < 1\\ 2, & 1 \le x \le 2. \end{cases}$$

Graph this function and find the integral

 $\int_{-2}^{2} u(x) \, dx.$ 

Solution:

$$\int_{-2}^{2} u(x) \, dx = \int_{-2}^{-1} dx + \int_{-1}^{1} (1 - x^2) \, dx + \int_{1}^{2} 2 \, dx$$
$$= [x]_{-2}^{-1} + \left[x - \frac{1}{3}x^3\right]_{-1}^{1} + [2x]_{1}^{2} = (-1 - (-2)) + \left[\left(1 - \frac{1^3}{3}\right) - \left(-1 - \frac{(-1)^3}{3}\right)\right]$$
$$+ [2(2) - 2(1)] = 1 + \frac{2}{3} - \left(-\frac{2}{3} + 4 - 2\right) = \boxed{\frac{13}{3}}$$

## Cep telefonunuzu gözetmene teslim ediniz / Deposit your cell phones to invigilatorDecember 21, 2017 [9:00 am-10:30 am]Math 113/ Final Exam -(-α-)Page 3 of 3



(b) <u>12 Points</u> Suppose the derivative of y = f(x) is  $y' = (x-1)^2(x-2)(x-4)$ . At what points, if any, does the graph of *f* have a local minimum, local maximum,  $y' = (x-1)^2(x-2)(x-4)$  or point of inflection?

Solution: When 
$$y' = (x-1)^2(x-2)(x-4)$$
, then  
 $y'' = 2(x-1)(x-2)(x-4) + (x-1)^2(x-4) + (x-1)^2(x-2)$   
 $= (x-1) \left[ 2(x^2-6x+8) + (x^2-5+4) + (x^2-3x+2) \right]$   
 $= 2(x-1)(2x^2-10x+11).$ 

The curve rises on  $(-\infty, 2)$  and  $(4, \infty)$  and falls on (2, 4). At x = 2, there is a local maximum and at x = 4 a local minimum. The curve is concave downward on  $(-\infty, 1)$  and  $\left(\frac{5-\sqrt{3}}{2}, \frac{5+\sqrt{3}}{2}\right)$  and concave upward on  $\left(1, \frac{5-\sqrt{3}}{2}\right)$  and  $\left(\frac{5+\sqrt{3}}{2}, \infty\right)$ . At  $x = 1, x = \frac{5-\sqrt{3}}{2}, x = \frac{5+\sqrt{3}}{2}$  there are inflection points.

