

tudent ID # / Öğrenci No			
Professor's Name / Öğretim Üyesi Your Department /	Bölüm		
Calculators, cell phones off and away!.		\sim	
 In order to receive credit, you must show all of your work. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct. Show your work in evaluating any limits, derivatives. Place a box around your answer to each question. Use a BLUE ball-point pen to fill the cover sheet. Please make sure that your exam is complete. Time limit is 70 min. 	Problem	Points	Score
	1	18	
	2	22	
	3	24	
	4	16	
	5	20	
	Total:	100	
1. Evaluate the following integrals.			
(a) 10 Points $\int_{1}^{4} \frac{10\sqrt{v}}{(1+v^{3/2})^2} dv.$			
Solution: Let $u = 1 + v^{3/2}$. Then $du = \frac{3}{-}v^{1/2} dv$. When $v = 1$, we have	y = 2 and when $y = 4$	4. we hav	e u = 9.7

$$\int_{1}^{4} \frac{10\sqrt{v}}{(1+v^{3/2})^{2}} dv = (10)(\frac{2}{3}) \int_{1}^{4} \frac{1}{(1+v^{3/2})^{2}} \frac{3}{2} v^{1/2} dv$$
$$= \frac{20}{3} \int_{2}^{9} \frac{1}{u^{2}} dv$$
$$= \frac{20}{3} \left[-\frac{1}{u} \right]_{2}^{9} = \frac{20}{3} \left[-\frac{1}{9} + \frac{1}{2} \right] = \boxed{\frac{70}{27}}$$

p.583, pr.32

(b) 8 Points $\int \frac{\sin(2t+1)}{\cos^2(2t+1)} dt$.

Solution: Let $u = \cos(2t+1)$. Then $du = -2\sin(2t+1) dt$. Now we have

$$\int \frac{\sin(2t+1)}{\cos^2(2t+1)} dt = -\frac{1}{2} \int \frac{1}{\cos^2(2t+1)} (-2)\sin(2t+1) dt$$
$$= -\frac{1}{2} \int \frac{1}{u^2} du$$
$$= -\frac{1}{2} \left[-\frac{1}{u} \right] + C = \frac{1}{2\cos(2t+1)} + C = \frac{1}{2} \sec(2t+1) + C$$

p.452, pr.24

2. (a) 12 Points Find the normals to the curve xy + 2x - y = 0 that are parallel to the line 2x + y = 0. **Solution:** If a normal to a curve is parallel to 2x + y = 0 then these two lines have the same slope: y = -2x-2 slope = -2Since the normal line at a point is perpendicular to the tangent line at that point, the slope of the tangent line is 1/2-6 $xy + 2x - y = 0 \Rightarrow$ implicit differentiation xy' + y + 2 - y' = 0y'(x-1) = -y - 2 $y' = (-y-2)/(x-1) \Rightarrow$ equate to slope of the tangent (1/2) 1/2 = (-y-2)/(x-1) $y = (-1/2)x - 3/2 \Rightarrow$ the equation of the tangent, solve as a system with the curve to get the intersections: xy + 2x - y = 0x = -1, 3y = -1, -3m = -2, (-1, -1) $y - y_1 = m(x - x_1)$ y + 1 = -2(x + 1) $y = -2x - 3 \Rightarrow$ equation of the normal at (-1, -1)y + 3 = -2(x - 3) $y = -2x + 3 \Rightarrow$ equation of the normal at (3, -3)p.487, pr.6 10 Points Show that the function $f(x) = x^4 + 3x + 1$ has exactly one zero in [-2, -1]. (b)

Solution: The function $f(x) = x^4 + 3x + 1$ is decreasing on the interval [-2, -1]. To show this, we take the derivative.

 $f'(x) = 4x^3 + 3$, which is less than zero whenever

 $4x^3 < -3$, which is the same as $x^3 < -3/4$, or equivalently

 $x < (-3/4)^{(1/3)}$. Since $(-3/4)^{(1/3)}$ is greater than -1, the derivative is negative on the whole interval, which means the function is decreasing and thus can have at most one zero there.

Now, $f(-2) = (-2)^4 + 3(-2) + 1 = 11$, which is greater than 0, and $f(-1) = (-1)^4 + 3(-1) + 1 = -1$, less than 0.

Combining all of this, we can say that the graph of $f(x) = x^4 + 3x + 1$ crosses the *x*- axis exactly once on the interval [-2, -1], and so has exactly one zero there.

Here's the graph to illustrate the solution.

- 3. Given the curve $y = \frac{4x}{x^2 + 4}$ and derivatives $y' = \frac{-4x^2 + 16}{(x^2 + 4)^2}$ and $y'' = \frac{8x^3 96x}{(x^2 + 4)^3}$
 - (a) 3 Points Identify the *domain* of f and any *symmetries* the curve may have.

Solution: Domain is $(-\infty, +\infty)$. Since $y(-x) = \frac{4(-x)}{(-x)^2 + 4} = -\frac{4x}{x^2 + 4} = -y(x)$ for each $x \in (-\infty, +\infty)$, the function is odd and so graph is symmetric with respect to the origin.

(b) 5 Points Find the intervals where the graph is increasing and decreasing. Find the local maximum and minimum values.

Solution:

 $y' = \frac{-4x^2 + 16}{(x^2 + 4)^2} > 0$ if and only if $-4x^2 + 16 > 0$, that is iff $x^2 < 4$, i.e., graph is increasing on (-2, +2) - 2 < x < 2 and decreasing on $(-\infty, -2) \cup (2, +\infty)$. By the First Derivative Test, graph has a local minimum at x = -2 and a local maximum at x = 2. The local minimum value is f(-2) = -1 which is the absolute mi. value and local maximum value is f(2) = 1 which is the absolute max. value.

(c) 5 Points Determine where the graph is concave up and concave down, and find any inflection points.

Solution:

Notice that $y'' = \frac{8x^3 - 96x}{(x^2 + 4)^3} > 0$ if and only if $8x^3 - 96x > 0$, that is iff $x(x^2 - 12) > 0$. solving the last inequality, we see that graph is concave up on $(-2\sqrt{3}, 0) \cup (2\sqrt{3}, +\infty)$ and concave down on $(-\infty, -2\sqrt{3}) \cup (0, 2\sqrt{3})$. Now due to the sign changes in y'', there are three points of inflection namely, $(-2\sqrt{3}, -\sqrt{3}/2), (0,0)$, and $(2\sqrt{3}, \sqrt{3}/2))$.

(d) 5 Points Find the asymptotes.

Solution: Since $x^2 + 4 \neq 0$, for each $x \in (-\infty, \infty)$, graph can not have a vertical asymptote. Since $\lim_{x \to \pm \infty} \frac{4x}{x^2 + 4} = 0$, we see that y = 0 is a horizontal asymptote. $\sum_{p,241, pr.45} p_{p,241, pr.45}$

(e) <u>6 Points</u> Draw the graph of f on the given grid showing all significant features.

4. 16 Points What are the dimensions of the *lightest* (with minimum area) open-top right circular cylindrical can that will hold a volume of $1000cm^3$?

Solution: Surface area of a cylinder $= 2\pi rh$

Surface area with one end cap =
$$2\pi rh + \pi r^2$$

$$S = 2\pi rh + \pi r^2$$

 $V = \pi r^2 h = 1000 cm^3$

$$h = 1000/\pi r^2$$

Substitute in for h...

$$S = 2\pi r (1000/\pi r^2) + \pi r^2$$

$$S = (2000/r) + \pi r^2$$

Take the derivative and set it equal to zero to find the minimum...

$$dS/dr = (-2000/r^{2}) + 2\pi r$$

$$(-2000/r^{2}) + 2\pi r = 0$$

$$-2000 + 2\pi r^{3} = 0$$

$$r^{3} = 2000/2\pi$$

$$r = \sqrt[3]{1000/\pi}$$

$$\left[\frac{d^{2}s}{dr^{2}}\right]_{r=\sqrt[3]{1000/\pi}} = (4000/r^{3}) + 2\pi = 4\pi + 2\pi = 6\pi$$
 which is positive and Second Derivative Test yields a minimum.
$$r = 6.83cm$$

 $h = 1000/\pi (6.83)^2 = 6.82cm$

Solution: Let R denote the shaded region. We shall find the area of R in two different ways. One description of R is

$$R = \underbrace{\{(x,y) \in \mathbb{R}^2 \mid \frac{x^2}{4} \le y \le x, \quad 0 \le x \le 1\}}_{R_1} \cup \underbrace{\{(x,y) \in \mathbb{R}^2 \mid \frac{x^2}{4} \le y \le 1, \quad 1 \le x \le 2\}}_{R_2}$$

Notice that $R = R_1 \cup R_2$ and $R_1 \cap R_2 = \emptyset$. Therefore $A(R) = A(R_1) + A(R_2)$. This shows that we will need two integrals.

$$A(R) = A(R_1) + A(R_2) = \int_0^1 \left(x - \frac{x^2}{4}\right) dx + \int_1^2 \left(1 - \frac{x^2}{4}\right) dx$$
$$= \left[\frac{1}{2}x^2 - \frac{x^3}{12}\right]_0^1 + \left[x - \frac{x^3}{12}\right]_1^2$$
$$= 2 - \frac{8}{12} - \frac{1}{2} = \left[\frac{5}{6}\right]$$

Next, we will find the area by integrating with respect to y. Another description for R is

$$R = \{ (x, y) \in \mathbb{R}^2 | y \le x \le 2\sqrt{y}, 0 \le y \le 1 \}$$

This will, of course, require a single integral (easier than the first way). Hence

$$A = A(R) = \int_0^1 (2\sqrt{y} - y) \, dy$$
$$= \left[2\frac{y^{3/2}}{3/2} - \frac{1}{2}y^2\right]_0^1 = \frac{4}{3} - \frac{1}{2} = \boxed{\frac{5}{6}}$$

p.298, pr.36

