
## Cep telefonunuzu gözetmene teslim ediniz / Deposit your cell phones to invigilatorApril 24, 2019 [4:00 pm-5:10 pm]Math 113/ Second ExamPage 1 of 4

| April 24, 2019 [4:00 pm-5:10 pm]                                                            | Math 113/ Second Exam                   |         |            |       |
|---------------------------------------------------------------------------------------------|-----------------------------------------|---------|------------|-------|
|                                                                                             | AND |         |            |       |
| Your Name / Adınız - Soyadınız                                                              | Your Signature / İm                     | iza     |            |       |
|                                                                                             |                                         |         |            |       |
| Student ID # / Öğrenci No Professor' s Name / Öğretim Üyesi                                 | Your Department /                       | Bölüm   |            |       |
| • Calculators, cell phones off and away!.                                                   |                                         |         | $\bigcirc$ |       |
| • In order to receive credit, you must <b>show</b>                                          |                                         |         |            |       |
| do not indicate the way in which you solve<br>little or no credit for it, even if your answ | er is correct. Show your                | Problem | Points     | Score |
| work in evaluating any limits, derivative                                                   |                                         | 1       | 25         |       |
| • Place a box around your answer to each                                                    |                                         | 2       | 30         |       |
| • Use a <b>BLUE ball-point pen</b> to fill the cover<br>that your exam is complete.         | er sheet. Please make sure              | 3       | 30         |       |
| • Time limit is 75 min.                                                                     |                                         |         |            |       |
| o not write in the table to the right.                                                      |                                         | 4       | 15         |       |
|                                                                                             |                                         | Total:  | 100        |       |

1. (a) 15 Points An isoscales triangle has its vertex at the origin and its base parallel to the x-axis with the vertices above the x axis on the curve  $y = 27 - x^2$ . Find the largest possible area of the triangle.

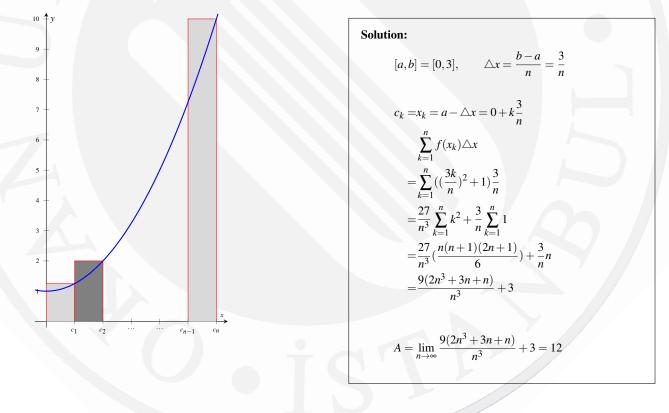


|   | Solution:                                                                 |
|---|---------------------------------------------------------------------------|
|   | $A = \frac{2x(27 - x^2)}{2} = 27x - x^3$                                  |
|   | $\frac{dA}{dx} = 27 - 3x^2 = 0 \Rightarrow x^2 = 9 \Rightarrow x = \pm 3$ |
|   | $A(-3) = -3(27 - (-3)^2) = -54$                                           |
|   | $A(3) = 3(27 - 3^2) = 54 \Rightarrow A = 54$                              |
| - |                                                                           |

(b) 10 Points For what value or values of constant k will the curve  $y = x^3 + kx^2 + 3x - 4$  have exactly one horizontal tangent?

| Solution:                                                         |                                        |  |  |
|-------------------------------------------------------------------|----------------------------------------|--|--|
|                                                                   | $\triangle = b^2 - 4ac = 0$            |  |  |
| $y' = 3x^{2} + 2kx + 3$ $\Rightarrow x^{2} + \frac{2}{3}kx + = 0$ | $(\frac{2}{3}k)^2 - 4 = 0$ $k = \pm 3$ |  |  |

## Cep telefonunuzu gözetmene teslim ediniz / Deposit your cell phones to invigilator April 24, 2019 [4:00 pm-5:10 pm] Math 113/ Second Exam Page 2 of 4


2. (a) 15 Points Calculate 
$$\frac{d}{dx} \int_{2}^{e^{x}} \frac{1}{\ln t} dt$$

Solution:

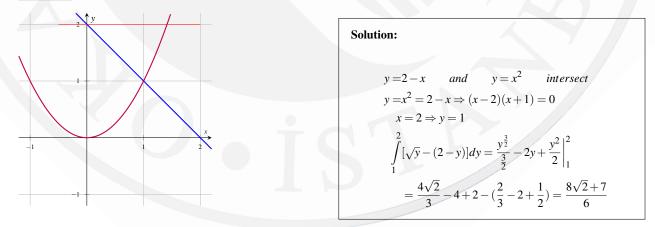
Let  $u = e^x$ . By the Chain Rule and the Fundamental Theorem of Calculus, it follows that

$$\frac{d}{dx} \int_{2}^{e^{x}} \frac{1}{\ln t} dt = \left(\frac{d}{du} \int_{2}^{u} \frac{1}{\ln t} dt\right) \left(\frac{du}{dx}\right)$$
$$= \left(\frac{1}{\ln u}\right) (e^{x}) = \frac{e^{x}}{\ln e^{x}} = \frac{e^{x}}{x}.$$

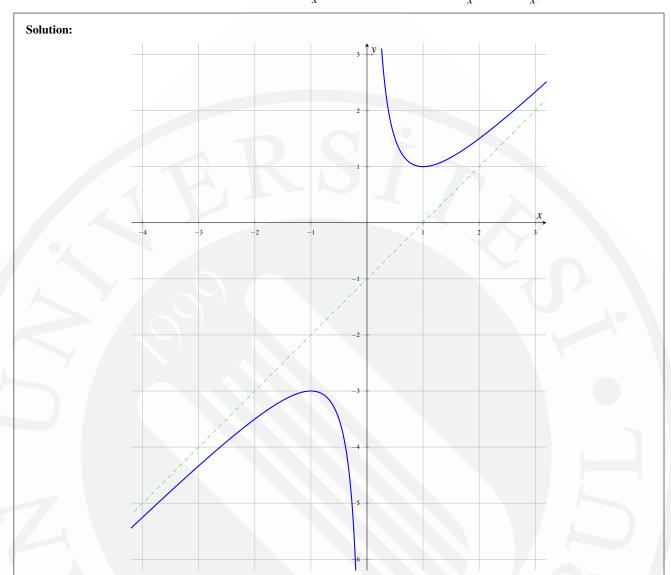
(b) 15 Points For the function  $f(x) = x^2 + 1$ , find a formula for the Riemann sum obtained by dividing the interval [0,3] into n equal subintervals and using the right hand point for each  $c_k$ . Then take a limit of these sums as  $n \to \infty$  to calculate the area under the curve over [0,3].



## Cep telefonunuzu gözetmene teslim ediniz / Deposit your cell phones to invigilatorApril 24, 2019 [4:00 pm-5:10 pm]Math 113/ Second ExamPage 3 of 4


3. (a) 10 Points Find the average value of  $y = \sqrt{3x}$  over [0,3]. Solution:  $av(f) = \frac{1}{3-0} \int_{0}^{3} \sqrt{3x} dx$   $u = 3x \Rightarrow du = 3dx$   $= \frac{1}{9} \int_{0}^{9} \sqrt{u} du$  u(0) = 0, u(3) = 9 $= \frac{u^{\frac{3}{2}}}{\frac{3}{2}} \Big|_{0}^{9} = \frac{2}{27} \sqrt{9^{3}} = 2$ 

b) 10 Points Evaluate the integral 
$$\int \frac{1}{\sqrt{x(1+\sqrt{x})^2}} dx$$
.


Solution:

$$\int \frac{1}{\sqrt{x}(1+\sqrt{x})^2} dx = \int \frac{2du}{u^2} \qquad u = 1 + \sqrt{x}, \frac{dx}{\sqrt{x}} = 2du$$
$$= -2\frac{1}{u} + C = -2\frac{1}{1+\sqrt{x}} + C$$

(c) 10 Points Find the area of the "triangular" region bounded on the left by x + y = 2, on the right by  $y = x^2$ , and above by y = 2.

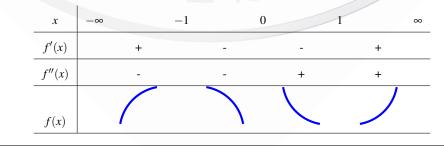


4. 15 Points Sketch the graph of the rational function  $y = \frac{x^2 - x + 1}{x}$ . Please note that  $y' = 1 - \frac{1}{x^2}$  and  $y'' = \frac{2}{x^3}$ .



Clearly y' is undefined at x = 0. We calculate that

 $0 = y' = 1 - \frac{1}{x^2} \implies x^2 = 1 \implies x = -1, 1.$ 


Therefore the critical points are x = -1, x = 0 and x = 1. We can also see that y'' is not defined at x = 0 and  $y'' \neq 0$  everywhere else. Hence the intervals to consider are  $(-\infty, -1)$ , (-1, 0), (0, 1) and  $(1, \infty)$ .

Next we must find the asymptotes of the graph: Since  $y = x - 1 + \frac{1}{x}$ , we can see that  $y \approx x - 1$  for large |x|. Hence y = x - 1 is an oblique asymptote of the graph. Moreover x = 0 is a vertical asymptote since  $\lim_{x \to 0^-} x - 1 + \frac{1}{x} = -\infty$  and  $\lim_{x \to 0^+} x - 1 + \frac{1}{x} = \infty$ .

We can also say that

- (i) f is increasing on the intervals  $(-\infty, -1)$  and  $(1, \infty)$ ;
- (ii) f is decreasing on the intervals (-1,0) and (0,1);
- (iii) f is concave down on the interval  $(-\infty, 0)$ ;
- (iv) f is concave up on the interval  $(0,\infty)$ ; and
- (v) (-1, f(-1)) is local maximum and (1, f(1)) is local minimum.

The table below summarises this information.

