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1. (10 points) Classify the following differential equations.Write the order, linearity and the
homogeneity of the equations.

a)
d3y

dx3
+ 2ex

d2y

dx2
= x3 + 5xy2.

Solution: It is a third order, nonlinear, and non-homegeneous differential equation.
b)

x′′ = (x′)2 + x′ sin t.

Solution: It is a second order, non-linear, and homegeneous differential equation.

2. (20 points) Solve the following initial value problem.

y′ − tanxy = sin 2x, y(0) = 2.

Solution: Note that the integrating factor is λ(x) = e
´
− tanxdx = eln|cosx| = cosx where −π

2
<

t <
π

2
Therefore, we get

(cosx) y(x) =

ˆ
cosx sin 2xdx = 2

ˆ
cos2 x sinxdx =⇒

y(x) = −2 cos2 x

3
+

C

cosx
Since y(0) = 2, it follows that

2 = y(0) =
2 cos2 0

3
+

C

cos 0
=⇒ C =

4

3
.

Then, the solution of the initial value problem is

y(x) =
2 cos2 x

3
+

4

3 cosx
.



3. (15 points) Find the general solution of the following differential equation.

y′ = (y − 1) cotx.

Solution: It is a separable differential equation. We solve the problem as follows.

dy

dx
= (y − 1) cotx =⇒ dy

y − 1
= cotxdx

=⇒
ˆ

dy

y − 1
=

ˆ
cotxdx+ C =

ˆ
cosx

sinx
dx+ C

=⇒ ln(y − 1) = ln sinx+ C =⇒ y − 1 = D sinx =⇒ y(x) = D sinx+ 1.

where D = eC . Since this is a linear equation an alternative solution is given as follows.

dy

dx
= (y − 1) cotx =⇒ dy

dx
− cotxy = − cotx.

Thus, the integrating factor is

λ = e
´
− cotxdx = e− ln(sinx) =

1

sinx
.

Consequently, the general solution can be obtained as follows.

1

sinx
y(x) =

ˆ
− cosx

sin2 x
dx =

1

sinx
+ C.

This yields

y(x) = C sinx+ 1.



4. (15 points) Write the linear, homogeneous, and constant coefficient differential equation whose
general solution is

y(t) = c1e
t + c2te

t + c3 cos 2x+ c4 sin 2x

Solution: The roots of the characteristic polynomial are 1, 1, 2i, -2i. The characteristic equation
is

(r − 1)2(r2 + 4) = 0

(r2 − 2r + 1)(r2 + 4) = 0

r4 − 2r3 + 5r2 − 8r + 4 = 0.

Consequently, the differential equation is

y(4) − 2y′′′ + 5y′′ − 8y′ + 4y = 0.



5. (20 points) Solve the following initial value problem.

y′′ − 2y′ + y = 1 + 4et, y(0) = 3, y′(0) = 1.

Solution:
The characteristic equation is r2−2r+1 = 0 and its roots are r1 = r2 = 1. Therefore, the solution
of the homogeneous equation is

yH(t) = c1e
t + c2te

t.

To find a particular solution, let us use the method of undetermined coefficients.

yp = A+Bt2et

y′p = 2Btet +Bt2et

y′′p = 2Bet + 4Btet +Bt2et.

Let us substitute these expressions in the differential equation. Then, we get

y′′ − 2y′ + y = 1 + 4et

2Bet + 4Btet +Bt2et − 4Btet − 2Bt2et + A+Bt2et = 1 + 4et

A+ (B − 2B +B)t2et + (4B − 4B)tet + 2Bet = 1 + 4et

which implies that A = 1, B = 2 and yp = 1 + 2t2et. Thus, the general solution is

y(t) = c1e
t + c2te

t + 2t2et + 1.

Let us use the initial conditions to determine c1 and c2.

y(0) = 3⇒ c1 + 1 = 3⇒ c1 = 2,

y′(0) = 1⇒ c1 + c2 = 1⇒ c2 = −1.

Consequently, the solution of the initial value problem is

y(t) = 2et − tet + 2t2et + 1.



6. (20 points) Solve the following initial value problem.

y′′ − 2y′ + y =
et

1 + t2
, y(0) = 3, y′(0) = 1.

Solution: The characteristic equation is r2− 2r+ 1 = 0 and its roots are r1 = r2 = 1. Therefore,
the solution of the homogeneous equation is

yH(t) = c1e
t + c2te

t.

To find a particular solution, let us use method of variation of the parameters. Assume that

yp(t) = u1e
t + u2te

t.

Then, we solve the following system of linear equations.

u′1e
t + u′2te

t = 0

u′1e
t + u′2e

t + u′2te
t =

et

1 + t2

If we substract the first equation from the second one, we obtain

u′2e
t =

et

1 + t2
⇒ u′2 =

1

1 + t2
⇒ u2 =

ˆ
1

1 + t2
dt = arctan t+ c10.

Since

u′1e
t + u′2te

t = 0

u′1 + u′2t = 0

u′1 = − t

1 + t2
,

this implies that

u1 =

ˆ
− t

1 + t2
dt = −1

2
ln(1 + t2) + c20.

Consequently, the general solution is

y(t) = c10e
t + c20te

t − 1

2
ln
(
t2 + 1

)
et + tet arctan t.

Since y(0) = 3, we get c1 = 3. Since

y′(x) = c1e
t + c2 (t+ 1) et − 1

2

2t

1 + t2
et − 1

2
ln
(
t2 + 1

)
et + et arctan t+ t

1

1 + t2
et + tet arctan t.

and y′(0) = 1, it follows that c1 + c2 = 1. Therefore, we get c2 = −2 and c1 = 3. Then, the
solution of the initial value problem is

y(x) = 3et − 2tet − 1

2
et ln

(
1 + t2

)
+ tet arctan t.


