

Your Name / Adınız - Soyadınız	Your Signature / İmza			
Student ID # / Öğrenci No Professor's Name / Öğretim Üyesi	Your Department / Bölüm			
• Calculators, cell phones are not allowed.		Problem	Points	Score
• In order to receive credit, you must show all of your work . If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct. Show your work in evaluating any derivatives, integrals .		1	20	
		2	30	
• Use a BLUE ball-point pen to fill the cover sheet. Please make sure that your exam is complete.		3	25	
		4	25	
• Time mint is 70 min. Do not write in the table to the right.		Total:	100	

1. 20 Points Find the general solution of the differential equation $(3x^2 + y^2)dx + 2xydy = 0$ which is homogeneous and exact.

Solution:

(a) **First Way**: The equation $2xydy + (3x^2 + y^2)dx = 0$ is an exact differential eq. Let us take $M(x, y) = 3x^2 + y^2$ and N(x, y) = 2xy. The derivative of *M* with respect to *y* and the derivative of *N* with respect to *x* are $M_y = 2y$ and $N_x = 2y$, so the equation above is an exact differential equation. Therefore, there exists a function F(x, y) = 0 such that $F_x dx + F_y dy = 0$.

$$F_x = M = 3x^2 + y^2 \Rightarrow F(x, y) = \int (3x^2 + y^2) dx = x^3 + xy^2 + h(y)$$

$$F_y = N = 2xy \Rightarrow F_y = 2xy + h'(y) = 2xy \Rightarrow h'(y) = 0 \Rightarrow h(y) = C$$

The solution is $F(x, y) = x^3 + xy^2 + C = 0$

(b) Second Way: The equation above is a homogeneous differential equation, so we use the substitution $v = \frac{y}{x} \Rightarrow y = vx$ and $\frac{dy}{dx} = x\frac{dv}{dx} + v$.

$$dx \quad dx$$

$$\frac{dy}{dx} = -\frac{3x^2 + y^2}{2xy} \Rightarrow x\frac{dv}{dx} + v = -\frac{3x^2 + v^2x^2}{2x^2v} = -\frac{3 + v^2}{2v}$$

$$\Rightarrow x\frac{dv}{dx} = -\frac{3 + v^2}{2v} - v = -\frac{3 + 3v^2}{2v}$$

$$\Rightarrow \frac{2v}{(1 + v^2)} dv = -3\frac{1}{x} dx$$

$$\Rightarrow \int \frac{2v}{(1 + v^2)} dv = -3\int \frac{1}{x} dx$$

$$\Rightarrow \ln|1 + v^2| = -3\ln|x| + \ln C$$

$$\Rightarrow 1 + v^2 = Cx^{-3}$$

$$\Rightarrow 1 + \frac{y^2}{x^2} = \frac{C}{x^3}$$

$$\Rightarrow x^3 + xy^2 = C$$

2. (a) 15 Points Find the solution of the initial value problem y'' - 3y' - 10y = 0 and y(0) = 7, y'(0) = 7.

Solution:

(a) First Way: The char. eq. of the differential equation above is $r^2 - 3r - 10 = 0$. The roots are $r_1 = 5$ and $r_2 = -2$. The general solution is $y(t) = c_1 e^{5t} + c_2 e^{-2t}$. Let us calculate c_1 and c_2 .

$$c_1 + c_2 = 7$$

 $5c_1 - 2c_2 = 7$ \Rightarrow $c_1 = 3$
 $c_2 = 4$

Therefore the solution is $y(t) = 3e^{5t} + 4e^{-2t}$.

(b) Second Way: Let us solve same question by using Laplace Transformation.

$$\mathscr{L} \left\{ y'' - 3y' - 10y \right\} = \mathscr{L} \left\{ 0 \right\}$$

$$(s^2 \mathscr{L} \left\{ y \right\} - sy(0) - y'(0)) - 3(s\mathscr{L} \left\{ y \right\} - y(0)) - 10\mathscr{L} \left\{ y \right\} = 0$$

$$s^2 \mathscr{L} \left\{ y \right\} - 7s - 7 - 3s\mathscr{L} \left\{ y \right\} + 21 - 10\mathscr{L} \left\{ y \right\} = 0$$

$$(s^2 - 3s - 10)\mathscr{L} \left\{ y \right\} = 7s + 7 - 21$$

$$\mathscr{L} \left\{ y \right\} = \frac{7s - 14}{(s^2 - 3s - 10)} = \frac{7s - 14}{(s - 5)(s + 2)} = \frac{3}{s - 5} + \frac{4}{s + 2}$$

$$y(t) = \mathscr{L}^{-1} \left\{ \frac{3}{s - 5} + \frac{4}{s + 2} \right\}$$

$$y(t) = 3e^{5t} + 4e^{-2t}$$

(c) 15 Points Find the solution of $y'' + 4y' + 5y = -2e^{-2t}$, y(0) = 0 and y'(0) = 0.

Solution:

(a) First Way: The characteristic equation of the d,ifferential eq. above is $r^2 + 4r + 5 = (r+2)^2 + 1 = 0$. Therefore, the roots of the char. eq. are $r_1 = -2 + i$, $r_2 = -2 - i$ and $y_h(t) = e^{-2t} (c_1 \cos t + c_2 \sin t)$. Let us find y_p by using method of undetermined coefficients.

$$y_p(t) = Ae^{-2t} \Rightarrow y'_p(t) = -2Ae^{-2t} \text{ and } y''_p(t) = 4Ae^{-2t}$$
$$y''_p + 4y'_p + 5y_p = -2e^{-2t}$$
$$4Ae^{-2t} + 4(-2Ae^{-2t}) + 5Ae^{-2t} = -2e^{-2t}$$
$$Ae^{-2t} = -2e^{-2t} \Rightarrow A = -2 \Rightarrow y_p = -2e^{-2t}$$

The general solution of the problem is $y(t) = e^{-2t} (c_1 \cos t + c_2 \sin t) - 2e^{-2t}$. Let us use the initial conditions y(0) = 0and y'(0) = 0.

$$y(0) = 0 \Rightarrow y(0) = e^{0} (c_{1} \cos 0 + c_{2} \sin 0) - 2e^{0} = 0 \Rightarrow c_{1} = 2$$

$$y'(0) = 0 \Rightarrow y'(t) = -2e^{-2t} (c_{1} \cos t + c_{2} \sin t) + e^{-2t} (-c_{1} \sin t + c_{2} \cos t) + 4e^{-2t}$$

$$\Rightarrow y'(0) = -2e^{0} (c_{1} \cos 0 + c_{2} \sin 0) + e^{0} (-c_{1} \sin 0 + c_{2} \cos 0) + 4e^{0} = 0 \Rightarrow -2c_{1} + c_{2} + 4 = 0 \Rightarrow c_{2} = 0$$

The solution of the initial value problem is
$$y(t) = 2e^{-2t}\cos t - 2e^{-2t}$$
.

(b) Second Way: Let us use Laplace Transformation to solve differential equation.

$$(s^2+4s+5)\mathscr{L}\{y\} = \frac{-2}{s+2}$$

=

3. 25 Points Find the solution of the following system of differential equations $\mathbf{x}' = A\mathbf{x}$ where $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{bmatrix}$ with eigenvalues $\lambda_1 = 3$

and
$$\lambda_2 = \lambda_3 = 1$$
 and $\mathbf{x}(0) = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$.

Solution: The eigenvalues of the system are given at the question as $\lambda_1 = 3$ and $\lambda_2 = \lambda_3 = 1$. Let us find the corresponding eigenvectors.

$$(A-3I)\mathbf{u} = \mathbf{0} \Rightarrow \begin{bmatrix} 2-3 & 1 & 1 \\ 0 & 1-3 & 0 \\ 1 & -1 & 2-3 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} -1 & 1 & 1 \\ 0 & -2 & 0 \\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \mathbf{u} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
$$(A-I)\mathbf{v} = \mathbf{0} \Rightarrow \begin{bmatrix} 2-1 & 1 & 1 \\ 0 & 1-1 & 0 \\ 1 & -1 & 2-1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

We obtain the third one by solving the system $(A - I)\mathbf{w} = \mathbf{v}$.

$$(A-I)\mathbf{w} = \mathbf{v} \Rightarrow \begin{bmatrix} 2-1 & 1 & 1 \\ 0 & 1-1 & 0 \\ 1 & -1 & 2-1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \Rightarrow \mathbf{w} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

The general solution is $\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} e^t + c_3 \left(\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} t + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right) e^t$. Let us compute arbitrary coefficients c_1 and c_2

$$\mathbf{x}(0) = \begin{bmatrix} 1\\ -2\\ 3 \end{bmatrix} \Rightarrow \mathbf{x}(0) = c_1 \begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix} e^0 + c_2 \begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix} e^0 + c_3 \left(\begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix} 0 + \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix} \right) e^0 \Rightarrow \begin{bmatrix} c_1 + c_2 = 1 & c_1 = 2\\ c_3 = -2 & \Rightarrow & c_2 = -1\\ c_1 - c_2 = 3 & c_3 = -2 \end{bmatrix}$$
$$\Rightarrow \mathbf{x}(t) = 2 \begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix} e^{3t} - \begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix} e^t - 2 \left(\begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix} t + \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix} \right) e^t \Rightarrow \mathbf{x}(t) = 2 \begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix} e^{3t} + \begin{bmatrix} -2t - 1\\ -2\\ 2t + 1 \end{bmatrix} e^t$$

4. 25 Points Find the solution of the following system of differential equations.

$$\mathbf{x}' = \begin{bmatrix} 2 & 1 \\ 0 & -3 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 7 \\ 4e^{-t} - 3 \end{bmatrix}, \quad \mathbf{x}(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Solution: Let us find the eigenvalues of the matrix $A = \begin{bmatrix} 2 & 1 \\ 0 & -3 \end{bmatrix}$.

$$|A - \lambda I| = 0 \Rightarrow \begin{vmatrix} 2 - \lambda & 1 \\ 0 & -3 - \lambda \end{vmatrix} = (2 - \lambda)(-3 - \lambda) - 0 \Rightarrow \lambda_1 = -3, \lambda_2 = 2.$$

The eigenvector corresponding to $\lambda_1 = -3$ is obtained by solving the system $(A + 3I)\mathbf{v} = \mathbf{0}$.

 $\begin{bmatrix} 2+3 & 1 & 0 \\ 0 & -3+3 & 0 \end{bmatrix} = \begin{bmatrix} 5 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \mathbf{v} = \begin{bmatrix} 1 \\ -5 \end{bmatrix}$

The eigenvector corresponding to $\lambda_2 = 2$ is obtained by solving the system $(A - 2I)\mathbf{w} = \mathbf{0}$.

$$\begin{bmatrix} 2-2 & 1 & 0 \\ 0 & -3-2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -5 & 0 \end{bmatrix} \Rightarrow \mathbf{w} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

The general solution of the homogeneous system $\mathbf{x}' = A\mathbf{x}$ is

$$\mathbf{x}_h(t) = c_1 \begin{bmatrix} 1\\ -5 \end{bmatrix} e^{-3t} + c_2 \begin{bmatrix} 1\\ 0 \end{bmatrix} e^{2t}.$$

Let us find \mathbf{x}_p by using method of undetermined coefficients.

$$\mathbf{x}_{p} = \begin{bmatrix} Ae^{-t} + B\\ Ce^{-t} + D \end{bmatrix} \Rightarrow \mathbf{x}_{p}' = \begin{bmatrix} -Ae^{-t}\\ -Ce^{-t} \end{bmatrix}$$
$$\Rightarrow \mathbf{x}' = \begin{bmatrix} 2 & 1\\ 0 & -3 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 6\\ 4e^{-t} - 3 \end{bmatrix} \Rightarrow \begin{bmatrix} -Ae^{-t}\\ -Ce^{-t} \end{bmatrix} = \begin{bmatrix} 2 & 1\\ 0 & -3 \end{bmatrix} \begin{bmatrix} Ae^{-t} + B\\ Ce^{-t} + D \end{bmatrix} + \begin{bmatrix} 7\\ 4e^{-t} - 3 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} -Ae^{-t}\\ -Ce^{-t} \end{bmatrix} = \begin{bmatrix} 2Ae^{-t} + 2B + Ce^{-t} + D + 7\\ -3Ce^{-t} - 3D + 4e^{-t} - 3 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} -Ae^{-t}\\ -Ce^{-t} \end{bmatrix} = \begin{bmatrix} 2A+C\\ -3C+4 \end{bmatrix} e^{-t} + \begin{bmatrix} 2B+D+7\\ -3D-3 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} -Ae^{-t}\\ -Ce^{-t} \end{bmatrix} = \begin{bmatrix} 2A+C\\ -3C+4 \end{bmatrix} e^{-t} + \begin{bmatrix} 2B+D+7\\ -3D-3 \end{bmatrix}$$
$$\Rightarrow \mathbf{x}_{p} = \begin{bmatrix} -e^{-t} - 3\\ 2e^{-t} - 1 \end{bmatrix}$$
The general solution of the system is $\mathbf{x} = c_{1} \begin{bmatrix} 1\\ -5 \end{bmatrix} e^{-3t} + c_{2} \begin{bmatrix} 1\\ 0 \end{bmatrix} e^{2t} + \begin{bmatrix} -e^{-t} - 3\\ 2e^{-t} - 1 \end{bmatrix}$ Let us use initial value $\mathbf{x}(0) = \begin{bmatrix} 4\\ -11 \end{bmatrix}$.
$$\mathbf{x}(0) = c_{1} \begin{bmatrix} 1\\ -5 \end{bmatrix} e^{0} + c_{2} \begin{bmatrix} 1\\ 0 \end{bmatrix} e^{0} + \begin{bmatrix} -e^{0} - 3\\ 2e^{0} - 1 \end{bmatrix} = c_{1} \begin{bmatrix} 1\\ -5 \end{bmatrix} + c_{2} \begin{bmatrix} 1\\ 0 \end{bmatrix} + \begin{bmatrix} -1-3\\ 2-1 \end{bmatrix} = \begin{bmatrix} c_{1} + c_{2} - 4\\ -5c_{1} + 1 \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix} \Rightarrow c_{1} = \frac{1}{5} \qquad c_{2} = \frac{19}{5}$$
The solution of thwe system is $\mathbf{x} = \frac{1}{5} \begin{bmatrix} 1\\ -5 \end{bmatrix} e^{-3t} + \frac{19}{5} \begin{bmatrix} 1\\ 0 \end{bmatrix} e^{2t} + \begin{bmatrix} -e^{-t} - 3\\ 2e^{-t} - 1 \end{bmatrix}$