Cep telefonunuzu gözetmene teslim ediniz / Deposit your cell phones to invigilator March 16, 2017 [16:00-17:15] MATH216 First Midterm Exam / MAT216 Birinci Ara Smav Page 1 of 5

Your Name / İsim Soyisim	Your Signature / İmza			
Student ID # / Öğrenci Numarası	Your Department / Bölüm			
 A student who has cheated or attempted to cheat in the exam will get a zero (0). Calculators, cell phones are not allowed. In order to receive credit, you must show all of your work. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct. Place a box around your answer to each question. If you need more room, use the backs of the pages and indicate that you have done so. Use a BLUE ball-point pen to fill the cover sheet. Please make sure that your exam is complete. 		Problem	Points	Score
		1	20	
		2	20	
		3	20	
		4	20	
		5	20	
• Time limit is 75 min.		Total:	100	

1. 20 points Solve the initial value problem $ty' + 2y = t^2 - t + 1$, y(1) = 2, t > 0.

Solution: $ty' + 2y = t^2 - t + 1$ is a linear differential equation. We can arrange the equation $y' + \frac{2}{t}y = t - 1 + \frac{1}{t}$ and the integrating factor is

$$\lambda(t) = e^{\int \frac{2}{t} dt} = e^{2\ln t} = t^2$$

Let us multiply the equation by the integrating factor.

$$t^{2}y' + 2ty = t^{3} - t^{2} + t$$
$$\frac{d}{dt}(t^{2}y) = t^{3} - t^{2} + t$$
$$t^{2}y = \int (t^{3} - t^{2} + t)dt = \frac{t^{4}}{4} - \frac{t^{3}}{3} + \frac{t^{2}}{2} + C$$
$$y(t) = \frac{t^{2}}{4} - \frac{t}{3} + \frac{1}{2} + \frac{C}{t^{2}}$$

Let us use the initial value to find arbitrary constant.

$$y(1) = 2 \Rightarrow y(1) = \frac{1}{4} - \frac{1}{3} + \frac{1}{2} + C = 2 \Rightarrow C = \frac{19}{12}$$

The solution of the initial value problem is $y(t) = \frac{t^2}{4} - \frac{t}{3} + \frac{1}{2} + \frac{19}{12t^2}$

2. (a) 5 points Classify the following differential equation. Write the order, linearity and the homogeneity of the equation.

$$\frac{d^3y}{dx^3} + 2e^x\frac{d^2y}{dx^2} = x^3 + 5xy.$$

Solution: The given equation is a third order, linear, and non-homegeneous differential equation.

(b) 15 points Draw a direction field for y' = -y(3-y).

Solution: y' = 0 at the points y = 0 and y = 3.

If 0 < y < 3, then y' < 0 and y is a decreasing function. If y < 0 and 3 < y, then y' > 0 and y is an increasing function.

Cep telefonunuzu gözetmene teslim ediniz / Deposit your cell phones to invigilator March 16, 2017 [16:00-17:15] MATH216 First Midterm Exam / MAT216 Birinci Ara Smav Page 3 of 5

3. 20 points Find the general solution of $(4xy^2 + 4y)dx + (4x^2y + 4x)dy = 0$.

Solution: Let us take $M(x, y) = 4xy^2 + 4y$ and $N(x, y) = 4x^2y + 4x$. Let us calculate $M_y = 8xy + 4 = N_x$, so the given equation is an exact differential equation. There exists a function F(x, y) = 0 such that $F_x dx + F_y dy = 0$. Therefore $F_x = 4xy^2 + 4y$ ve $F_y = 4x^2y + 4x$.

$$F_x = 4xy^2 + 4y \Rightarrow F(x, y) = \int (4xy^2 + 4y)dx = 2x^2y^2 + 4xy + h(y)$$

$$F_y = 4x^2y + 4x \Rightarrow F_y = 4x^2y + 4x + h'(y) = 4x^2y + 4x \Rightarrow h'(y) = 0 \Rightarrow h(y) = C$$

$$F(x, y) = 2x^2y^2 + 4xy + C = 0$$

- 4. Suppose that $(r-1)(r^2+9) = 0$ is the characteristic equation of a linear, homogeneous and constant coefficient differential equation.
 - (a) 5 points Determine the differential equation mentioned above.
 - (b) 15 points Find the solution of the differential equation, that you wrote in part (a), which satisfies the initial conditions y(0) = 2, y'(0) = -3, y''(0) = 12.

Solution:

- (a) $(r-1)(r^2+9) = 0 \Rightarrow r^3 r^2 + 9r 9 = 0 \Rightarrow \frac{d^3y}{dx^3} \frac{d^2y}{dx^2} + 9\frac{dy}{dx} 9y = 0$
- (b) $(r-1)(r^2+9) = 0 \Rightarrow r_1 = 1, r_2 = 3i, r_3 = -3i$ and the general solution of the given differential equation is $y(x) = c_1 e^x + c_2 \cos 3x + c_3 \sin 3x$.

Let us use the initial values to find arbitrary coefficients.

$$y(0) = 2 \Rightarrow y(0) = c_1 e^0 + c_2 \cos 0 + c_3 \sin 0 = 2 \Rightarrow c_1 + c_2 = 2$$
$$y'(0) = -3 \Rightarrow y'(x) = c_1 e^x - 3c_2 \sin 3x + 3c_3 \cos 3x \Rightarrow y'(0) = c_1 e^0 - 3c_2 \sin 0 + 3c_3 \cos 0 \Rightarrow c_1 + 3c_3 = -3$$
$$y''(0) = 12 \Rightarrow y''(x) = c_1 e^x - 9c_2 \cos 3x - 9c_3 \sin 3x \Rightarrow y''(0) = c_1 e^0 - 9c_2 \cos 0 - 9c_3 \sin 0 = 12 \Rightarrow c_1 - 9c_2 = 12$$

when we solve the system, we obtain $c_1 = 3$, $c_2 = -1$, $c_3 = -2$. The particular solution of the given differential equation is $y(x) = 3e^x - \cos 3x - 2\sin 3x$.

Cep telefonunuzu gözetmene teslim ediniz / Deposit your cell phones to invigilator March 16, 2017 [16:00-17:15] MATH216 First Midterm Exam / MAT216 Birinci Ara Smav Page 5 of 5

5. 20 points Find the general solution of $y'' - y' - 2y = -3 + 4t^2$.

Solution: Let us find the general solution of the y'' - y' - 2y = 0. The characteristic equation and its roots are

 $r^2-r-2=0 \Rightarrow (r-2)(r+1)=0 \Rightarrow r_1=2, r_2=-1$

and the gereral solution is $y_h(t) = c_1 e^{2t} + c_2 e^{-t}$.

We can determine the particular solution by using method of undetermined coefficient, so $y_p(t) = At^2 + Bt + C$. The derivatives of the y_p are $y'_p = 2At + B$ and $y''_p = 2A$.

$$y_p'' - y_p' - 2y_p = -3 + 4t^2$$

$$2A - (2At + B) - 2(At^2 + Bt + C) = -3 + 4t^2$$

$$-2At^2 + (-2A - 2B)t + (2A - B - 2C) = -3 + 4t^2$$

$$\Rightarrow A = -2, B = 2, C = -\frac{3}{2}$$

$$y_p(t) = -2t^2 + 2t - \frac{3}{2}$$

The general solution of the given differential equation is $y(t) = y_h(t) + y_p(t) = c_1e^{2t} + c_2e^{-t} - 2t^2 + 2t - \frac{3}{2}$.