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Elementary Laplace Transforms: Suppose that a, b ∈ R, n ∈ N, and L{f(t)} exists and F (s) = L{f(t)}
• L{1} =

1

s
, s > 0

• L{eat} =
1

s− a
, s > a,

• L{tn} =
n!

sn+1
, s > 0,

• L{tneat} =
n!

(s− a)n+1

• L{eat sin bt} =
b

(s− a)2 + b2

• f ∗ g =
t∫
0

f(t− τ)g(τ)dτ

• L{cos at} =
s

s2 + a2
, s > 0

• L{sin at} =
a

s2 + a2
, s > 0

• L {cosh at} =
s

s2 − a2
, s > |a|

• L {sinh at} =
a

s2 − a2
, s > |a|

• L{eat cos bt} =
s− a

(s− a)2 + b2

• f ∗ g = g ∗ f =
t∫
0

g(t− τ)f(τ)dτ

• L{f(ct)} =
1

c
F (
s

c
), c > 0

• L{uc(t)f(t− c)} = e−csL{f(t)}

• L{uc(t)} =
e−cs

s
, s > 0

• L{eatf(t)} = F (s− a)

• L {tnf(t)} = (−1)n
dnF (s)

dsn

• L {f ∗ g} = F (s)G(s)

1. (a) 15 points Find the solution of the following initial value problem. y′′′− 4y′′− 12y′ = 0,y(0) = 1, y′(0) = −6, y′′(0) = 12
.

Solution: The characteristic equation of the given differential equatin is

r3 − 4r2 − 12r = 0⇒ r(r2 − 4r − 12) = 0⇒ r(r − 6)(r + 2) = 0⇒ r1 = 0, r2 = 6, r3 = −2

The general solution of the differential equation is

y(t) = c1e
0t + c2e

6t + c3e
−2t

y(t) = c1 + c2e
6t + c3e

−2t

y(0) = 1⇒ c1 + c2 + c3 = 1

y′(0) = −6⇒ y′(t) = 6c2e
6t − 2c3e

−2t ⇒ 6c2 − 2c3 = −6

y′′(0) = 12⇒ y′(t) = 36c2e
6t + 4c3e

−2t ⇒ 36c2 + 4c3 = 12

c1 = −2, c2 = 0, c3 = 3

y(t) = −2 + 3e−2t



16 May 2018 [11:00-12:20] MATH216, Final Exam Page 2 of 4
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(b) 10 points Find the general solution of
dy

dx
= −2x(y2 + 1)

y
.

Solution:

dy

dx
= −2x(y2 + 1)

y
⇒ y

y2 + 1
dy = −2xdx⇒

∫
y

y2 + 1
dy =

∫
−2xdx⇒ 1

2
ln(y2 + 1) = −x2 + C

2. (a) 10 points Find the Laplace Transform of f(t) =
t∫
0

(t− τ)2 cos 3τdτ .

Solution:

L{f ∗ g} = L{f(t)} .L{g(t)}

t2 ∗ cos 3t =

t∫
0

(t− τ)2 cos 3τdτ

⇒ L


t∫

0

(t− τ)2 cos 3τdτ

 = L
{
t2 ∗ cos 3t

}
= L

{
t2
}
L{cos 3t} =

2

s3
.

s

s2 + 9

(b) 10 points Write the convolution integral that represents the inverse Laplace Transform of F (s) =
s

s2(s2 + 4)
.

Solution:

L−1
{

2

s2(s2 + 4)

}
= L−1

{
1

s2
2

s2 + 4

}
= t ∗ sin 2t =

t∫
0

(t− τ) sin 2τdτ
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3. (a) 3 points Is the differential equation (3x2 − y)dx+ xdy = 0 exact?

Solution: First of all, let us take M(x, y) = 3x2−y and N(x, y) = x . My = −1, Nx = 1 It is not an exact equation.

(b) 5 points If the answer is no, then find the integrating factor µ(x) which depends on x such that

µ(x)(3x2 − y)dx+ µ(x)xdy = 0 is an exact differential equation.

Solution:

My −Nx

N
=
−1− 1

x
= − 2

x
⇒ µ(x) = e

∫
−

2

x
dx

= e−2 ln x =
1

x2

(c) 17 points Find the general solution of (3x2 − y)dx+ xdy = 0 .

Solution:

µ(x) [M(x, y)dx+N(x, y)dy = 0]⇒ 1

x2
[
(3x2 − y)dx+ xdy = 0

]
⇒
(

3− y

x2

)
dx+

1

x
dy = 0

P (x, y) = 3− y

x2
and Q(x, y) =

1

x
⇒ Py = − 1

x2
= Qx Exact Differential Equation

Therefore, there exists a function F (x, y) = 0 such that Fxdx+ Fydy = 0.

Fx = 3− y

x2
and Fy =

1

x

F (x, y) =

∫
1

x
dy ⇒ F (x, y) =

y

x
+ g(x)

Fx = − y

x2
+ g′(x) = 3− y

x2
⇒ g′(x) = 3⇒ g(x) = 3x+ C

F (x, y) =
y

x
+ 3x+ C = 0
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4. (a) 10 points Find the general solution of the system x′ = Ax where A =

[
3 −1
4 −1

]
with eigenvalues λ1 = λ2 = 1 and the

corresponding eigenvector to λ is v =

[
1
2

]
.

Solution:

(A− λI)w = v⇒
[

2 −1 1
4 −2 2

]
∼
[

2 −1 1
0 0 0

]
⇒ w =

[
w1

2w1 − 1

]
=

[
1
2

]
w1 +

[
0
−1

]
⇒ w =

[
0
−1

]
x(t) = c1ve

t + c2 [vt+ w] et = c1

[
1
2

]
et + c2

[[
1
2

]
t+

[
0
−1

]]
et

x(t) = c1

[
1
2

]
et + c2

[
t

2t− 1

]
et

(b) 20 points Find the solution of the initial value problem x′ =

[
3 −1
4 −1

]
x +

[
5

4e−t

]
, x(0) =

[
3
−1

]
.

Solution:

xp =

[
A1

A2

]
+

[
B1

B2

]
e−t ⇒ x′p = −

[
B1

B2

]
e−t

x′p =

[
3 −1
4 −1

]
xp +

[
5

2e−t

]
−
[
B1

B2

]
e−t =

[
3 −1
4 −1

]([
A1

A2

]
+

[
B1

B2

]
e−t
)

+

[
5

4e−t

]
[
−B1

−B2

]
e−t =

[
3A1 −A2

4A1 −A2

]
+

[
3B1 −B2

4B1 −B2

]
e−t +

[
5

4e−t

]
=

[
3A1 −A2 + 5

4A1 −A2

]
+

[
3B1 −B2

4B1 −B2 + 4

]
e−t[

3A1 −A2 + 5
4A1 −A2

]
=

[
0
0

]
and

[
3B1 −B2

4B1 −B2 + 4

]
=

[
−B1

−B2

]
⇒
[
A1

A2

]
=

[
5
20

]
and

[
B1

B2

]
=

[
−1
−4

]
xp =

[
5
20

]
+

[
−1
−4

]
e−t

The general solution of the system is

x(t) = c1

[
1
2

]
et + c2

[
t

2t− 1

]
et +

[
5
20

]
+

[
−1
−4

]
e−t

x(0) =

[
3
−1

]
⇒ x(0) = c1

[
1
2

]
e0 + c2

[
0
−1

]
e0 +

[
5
20

]
+

[
−1
−4

]
e0 =

[
3
−1

]
[

c1 + 5− 1
2c1 − c2 + 20− 4

]
=

[
3
−1

]
⇒
[
c1
c2

]
=

[
−1
15

]
x(t) = −

[
1
2

]
et + 15

[
t

2t− 1

]
et +

[
5
20

]
+

[
−1
−4

]
e−t

x(t) =

[
15t− 1
30t− 17

]
et +

[
5
20

]
+

[
−1
−4

]
e−t


