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1. 20 points Find the solution of the initial value problem
dy

dx
=
x2 − xy + y2

xy
, y(3) = 0 by using the substitution y = vx.

Solution: Let us express the
dy

dx
=
x2 − xy + y2

xy
as afunction of

y

x
.

1− y
x + ( y

x )2

y
x

It is a homogeneous equation and we use the substitution v = y
x to solve it.

v =
y

x
⇒ y = vx⇒ dy

dx
= x

dv

dx
+ v

dy

dx
=
x2 − xy + y2

xy
⇒ x

dv

dx
+ v =

x2 − x(vx) + (vx)2

x(vx)

x
dv

dx
=

1− v + v2

v
− v =

1− v
v

v

v − 1
dv = − 1

x
dx⇒

∫
v

v − 1
dv = −

∫
1

x
dx∫ (

1 +
1

v − 1

)
dv = −

∫
1

x
dx

⇒ v + ln |v − 1| = − ln |x|+ C ⇒ y

x
+ ln

∣∣∣y
x
− 1
∣∣∣ = − ln |x|+ C

Let us substitute the initial value. x = 3 and y = 0.

y(3) = 0⇒ 0

3
+ ln

∣∣∣∣03 − 1

∣∣∣∣ = − ln |3|+ C ⇒ C = ln 3

y

x
+ ln

∣∣∣y
x
− 1
∣∣∣ = − ln |x|+ ln 3

e
y
x

(y
x
− 1
)

=
3

x
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2. (a) 15 points Find the general solution of
dy

dt
+

3

t
y =

cos t

t3
where t > 0.

Solution: It is a linear differential equation. Let us find the integrating factor.

µ(t) = e
∫

3
t dt = e3 ln t = t3

Calculate the product of µ(t) and the given differential equation.

t3
dy

dt
+ 3t2y = cos t

d

dt

(
t3y
)

= cos t⇒ t3y =

∫
cos tdt⇒ t3y = sin t+ C ⇒ y(t) =

sin t+ C

t3

(b) 15 points i. Find the equilibrium solutions for y′ = y(4− y2).

ii. Sketch the direction field of y′ = y(4− y2) (You are expected to draw 121 arrows).

iii. Classify each equlibrium solution as asymptotically stable or unstable.

Solution:

(a) At the points y = 0, y = 2, and y = −2, we have y′ = 0. Therefore y = 0, y = 2, and y = −2 are the equilibrium
solution.

(b) Let us determine the sign of y′

if − 2 < y < 0 or y > 2 then y′ < 0 so, it is a decreasing function.

if y < −2 or 0 < y < 2 then y′ > 0 so, it is an increasing function.

-2 -1 1 2

-3

-2

-1

1

2

3

x

y

y = −2 and y = 2 are asymptotically stable and, y = 0 is unstable.
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3. 25 points Find the general solution of y′′′ − 2y′′ + y′ = 12ex + 5.

Solution: Let us find the general solution of y′′′ − 2y′′ + y′ = 0. The characteristic equation is r3 − 2r2 + r = 0, and its
roots are r1 = 0 and r2 = r3 = 1.Therefore

yh(x) = c1 + c2e
x + c3xe

3x

We can find yp(x) by using method of undetermined .

yp(x) = Ax2ex +Bx

y′p(x) = 2Axex +Ax2ex +B

y′′p (x) = 2Aex + 4Axex +Ax2ex

y′′′p (x) = 6Aex + 6Axex +Ax2ex

Let us substitute them

y′′′ − 2y′′ + y′ =
[
6Aex + 6Axex +Ax2ex

]
− 2

[
2Aex + 4Axex +Ax2ex

]
+
[
2Axex +Ax2ex +B

]
= (6A− 4A)ex + (6A− 8A+ 2A)xex + (A− 2A+A)x2ex +B

⇒ y′′′ + 6y′′ + 9y′ = 12ex + 5

2Aex +B = 12ex + 5

⇒ 2A = 12⇒ A = 6

⇒ B = 5⇒ B = 5

Therefore yp(x) = 6x2ex + 5x. The general solution of the equation is

y(x) = c1 + c2e
x + c3xe

x + 6x2ex + 5x
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4. 25 points Find the general solution of y′′ − 2y′ + 2y = ex secx.

Solution: Let us find the general solution of y′′− 2y′ + 2y = 0.The characteristik equation of the homogeneous equation
is r2− 2r+ 2 = 0 and its roots are r1 = 1 + i and r2 = 1− i. Therefore, the general solution of the homegeneous equation
is

yh(x) = c1e
x cosx+ c2e

x sinx

Let us find yp by using variation of parameters. yp(x) = u1e
x cosx+ u2e

x sinx and we solve the system

u′1e
x cosx+ u′2e

x sinx = 0

u′1e
x cosx− u′1ex sinx+ u′2e

x sinx+ u′2e
x cosx = ex secx

so

u′1e
x cosx+ u′2e

x sinx = 0

−u′1ex sinx+ u′2e
x cosx = ex secx

When we solve the system, we obtain u′1 = − sinx

cosx
and u′2 = 1, so u1 = ln |cosx| and u2 = x.

yp(x) = ex cosxln |cosx|+ xex sinx

The general solution of the differetial equation is y(x) = yh(x) + yp(x), so

y(x) = c1e
x cosx+ c2e

x sinx+ ex cosxln |cosx|+ xex sinx


