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FORENAME: Question | Points | Score
SURNAME: 1 25
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TEACHER: Neil Course Vasfi Eldem Hasan Ozekes Sezgin Sezer 4 25

SIGNATURE:

Total: 100

e The time limit is 90 minutes.

e Give your answers in exact form (for
example 4 or 5v/3), except as noted in
particular problems.

e All communication between students, eit-
her verbally or non-verbally, is strictly for-
bidden.

e Calculators, mobile phones, smart watc-
hes, and any digital means of communi-
cation are forbidden. The sharing of pens,
erasers or any other item between students
is forbidden.

e In order to receive credit, you must show
all of your work. If you do not indicate

the way in which you solved a problem,
you may get little or no credit for it, even
if your answer is correct.

e Place | a box around your answer | to each

question.

e Please do not write in the table above.

1. Consider

y+ (2z — 3ye¥)y’ = 0.

(a) Show that (1) is not exact .

Solution: Let M(x,y) =y and N(x,y) = 2z — 3ye¥. Since M, = 1 # 2 = N,, equation (1) is not exact.

(b) |10 points | Find an integrating factor u(y) which can be used to convert (1) into an exact equation.

Solution: Solving

du  (N,—M,\ [(2-1
w \_m JFT\Ty JH

gives p(y) = y.

d " d
b = //—f:/gy —  Inju/=Inyl+C = p==+%

(c) Multiply (1) by your u(y), then prove that the equation is now exact.

exact.

Solution: Multiplying (1) by u(y) = y gives y? + (2zy — 3y%e¥)y’ = 0.

Now let M(z,y) = y? and N(z,y) = 2zy — 3y?e¥. Then we have M, = 2y = N,. Therefore the equation is now

(d) Solve (1).

former equation gives

2zy

(where we have chosen the constant

for some constant c.

o= [ bnde = [ do =z + iy

for some unknown function h(y). Then differentiating gives

— 3y2e¥ =
ye by dy

It follows that h'(y) = —3y?eY. Using integration by parts, we calculate that

of integration as C' = 0).

Therefore the general solution to (1) is

zy? —3(y* — 2y +2)e¥ = ¢

Solution: We must find a function ¢(z,y) such that ¢, = M = y? and ¢, = N = 2zy — 3y?e?. Integrating the

_ 4 (zy? + h(y)) = 22y + W' (y).

h(y) = / W (y) dy = / =3y’e’ dy = =3(y* — 2y + 2)¢"
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y" — 3y’ + 2y = cost

2. (a) Use the Laplace Transform to solve < y(0) =0

y'(0) = 0.

Solution: Taking the Laplace Transform of the ODE gives

Lly"] = 3L[y'] + 2L[y] = Lcos?]

(2Y = s5y(0) — 4/ (0) = 3(sY = y(0)) +2¥ = "=
(52—3s+2)Y:ﬁ
Ut rer s sy
B (s2+1)(88—2)(8—1)
As+B  C D

- s24+1 +s—2+s—1

(As+B)(s—2)(s—1)+C(s*>+1)(s—1) +D(82+1)(8—2)
(s* +1)(s = 2)(s

1 3 2 1
(A:E7B:_Toac:37D_7§)
1.3 2 1

_ 10 10 5 9
5241 +s—2 s—1

1 S 3 1 2 1 1 1
10<52+1) 10<52+1>+5<s—2) 2<s—l>
= iE[cost] - iL[sint} + gﬁ [e*'] — EE [ef] .

10 10 5 2

Therefore the solution to the IVP is

1 3 2 1
y(t) = Ecost— Esmt—l— E et — iet.

25 —
(b) Find the inverse Laplace Transform of F'(s) = %

Solution:

First we calculate that
25— 5 2s — 5 25+ 2 -7

F(s) = =
() s2+2s+10 (s+1)% + 32 (3—|—1)2—|—32+(s—|—1)2—|—32

~(wwoeem) s (weomem)
2L

[ cos St] L [e_t sin St] .

C»J\\]

Therefore :
f(t) = L7'F)(t) = 2e " cos 3t — ge_t sin 3t.

(a table of Laplace Transforms will be printed here when the answers are hidden)
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11
; ;L
3. | 25 points | Solve x’ = {0 1} X.

Solution: Clearly the eigenvalues of the matrix A = [(1) ﬂ are r1 = ro = 1, since the matrix is triangular.

We calculate that
omeme= [ L)< ol B =[5 = e

Therefore £ = F} is the only linearly independent eigenvector of A. x(V(t) = e = B] el is one solution of the linear

0
system.

For our second solution, we take x(?)(t) = &te! 4+ net where 7 solves (A —71)n = &. In other words; where 7 is a generalised
eigenvector of A.

We calculate that
N 0 I m|  |me ]
o me=ammm=fo =[] = ==
. 0 @) t ¢ Y e |9
Since n; can be any number, so we may choose 771 = 0. Then we have n = 1 and x4 (t) = &tet +net = 0 te' + Nk

Therefore the general solution to the linear system is

st = [ s ([1] ] )

for constants ¢; and cs.

Learning Objectives:

LO1 first order ODEs 25 points Q1

LO2 higher order ODEs 0 points

LO3 Laplace T. 25 points Q2

LO4 systems 50 points Q3 & Q4
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1 () sove {1
1
Solution: Solving
0=det(A—rl)= ‘2_—17' Qir =2-r)P+l=4—dr+rP+1=r*—dr+5

gives
—b+ Vb2 —4ac 4+ /16 —20
r= =
2a 2

=21

SoA=2and p=1.
Next we must find an eigenvector for » = 2 + i. We calculate that

0=(A—rl)t= [2 - (,Qﬁ R 2 é ﬂ-)} Eﬂ B H 1@'] Ej - [_gl+ gj

which implies that 0 = —i&; + &. If we choose £; = 1, then we must have £ = i€; = i. Hence we let £ = B] . Thus

€%t cost [e?tsint
et cost| "

1 )
x(M(¢) = eMert = [J e*(cost +isint) = [—e2t din ¢ 5

It follows that the general solution to the linear system is

Rit) e { cost ] 2ty e {smt] o2t

—sint cost

for constants ¢; and cs.

Finally we use the initial condition x(0) = [H to find the constants. We calculate that

1 o cosO | o sin0| o 1 0 |a
[1} =x(0) = [— sin()} e T e Los 0} e« {0] T e L} o |:02:|

which implies that ¢; = 1 = ¢o. Therefore the solution is

x(t) = co§t 2ty sint o2t — cost—i—s%nt o2t
—sint cost cost —sint

which looks like this:

—50

Z1 X9
50 + 100
7. 8/ ¥ t[ 50 |
QW 6 8\ 10 [i2 ;
i N o6 \s 1p o1
_50 1

—100

(b) Give a fundamental matrix for the above system.

Solution: Since the general solution to this linear system is

r ot 2t o
e“’ cost e“'sint
X(t) - Clu(t) + CQV(t) . —e?tsin t} e {6% CcOSs t]

it follows that a fundamental matrix for this linear system is

e’ cost  e?tsint

(o) = [u) V)] = | |

sint  e% cost




