Cep telefonunuzu gözetmene teslim ediniz. Deposit your cell phones to an invigilator. 27 May 2019 [14:10-15:40] MATH216 – Final Exam Page 1 of 4

D																1												ĺ			
FOREN	IAME:																											,	Question	Points	Score
Surn	AME:																												1	25	
Student	r No:																												2	25	
Departm	IENT:																											Ì	3	25	
TEAC	CHER:		Nei	l Co	urs	e			Vasf	ı El	den	n			Ηŧ	asa	n Ċ	Żze	kes	3			S	ezg	in \$	Sez	$\mathbf{e}\mathbf{r}$		4	25	
SIGNAT	rure:																												Total:	100	
 Th Give exar part All of her bidd 	e tim your nple $\frac{\pi}{3}$ icular p commu verbally len.	e li ans or prob nica y or	mits swers $5\sqrt{3}$ lems tion non-	t is s in \overline{s}), ex betw verba	90 exa ccep zeen ally,	mi act ot as 1 stu , is s	form form s no ident trict	tes n (f ted ts, e	in it- or-		 C h er is In a 	alcul es, an ation rasers forb n ord- ll of	aton are s or idde er t yo	rs, any e for any en. o re ur	mo y di rbid y ot ecei wo	bile gita lden her ve rk .	e pl al n iter crec If :	hon nea The m b lit, you	es, ns sha oetv you do	sm of urin veen 1 m no	art con g o n st nust nust	t wa nmu of pe tude t sh ndic	atc- ini- ens, ents ow ate			tl y if P q P	he ou 'yo 'lac ues	way may ur a tion se d	y in which yo y get little or answer is corre- a box around ; h. lo not write in	u solved a no credit fe ect. your answe	problem, or it, even r to each above.
1. Cons (a) [1. Consider $y + (2x - 3ye^y)y' = 0.$ (1) (a) 2 points Show that (1) is not exact.																														
	Solution: Let $M(x, y) = y$ and $N(x, y) = 2x - 3ye^y$. Since $M_y = 1 \neq 2 = N_x$, equation (1) is not exact.																														
(b)	10 po	ints	F	ind a	an	inte	egra	ting	g fac	tor	$\mu(y$	ı) wł	nicł	n ca	an	be	us	ed	to	coi	nve	ert	(1)	int	0 8	n	exa	act	equation.		
	Solution: Solving																														
	$\frac{d\mu}{dy} = \left(\frac{N_x - M_y}{M}\right)\mu = \left(\frac{2-1}{y}\right)\mu = \frac{\mu}{y} \implies \int \frac{d\mu}{\mu} = \int \frac{dy}{y} \implies \ln \mu = \ln y + C \implies \mu = \pm e^C y$											$\pm e^C y$																			
	give	$ \mu $	(y) =	= y.																											
(c)	3 poir	nts	Μι	ıltip	ly	(1)	by :	you	r $\mu(y$	/), t	her	ı pro	ove	$^{\mathrm{th}}$	at	$^{\mathrm{the}}$	e ec	qua	tio	n i	is r	10W	ex	act							
	Solution: Multiplying (1) by $\mu(y) = y$ gives $y^2 + (2xy - 3y^2e^y)y' = 0$. Now let $M(x, y) = y^2$ and $N(x, y) = 2xy - 3y^2e^y$. Then we have $M_y = 2y = N_x$. Therefore the equation is now exact.																														
(d)	10 po	ints		olve	(1)).																									
Solution: We must find a function $\phi(x, y)$ such that $\phi_x = M = y^2$ and $\phi_y = N = 2xy - 3y^2 e^y$. Integrating the former equation gives $\phi = \int \phi_x dx = \int y^2 dx = xy^2 + h(y)$																															
for some unknown function $h(y)$. Then differentiating gives																															
$2xy - 3y^2 e^y = \phi_y = \frac{d}{dy} \left(xy^2 + h(y) \right) = 2xy + h'(y).$																															
	It follows that $h'(y) = -3y^2 e^y$. Using integration by parts, we calculate that																														
									h(y) =	=]	h'(y)	y) d	ly =	= J	- J	-3y	$v^2 e^{i}$	^{y}dq	y =	=	-3(2	y ² -	- 2į	/+	2)	e^y				
	(wh	ere	we]	have	ch	lose	n tł	ne c	onsta	ant	of i	integ	grat	ior	ı a	s C	7 =	0)													

Therefore the general solution to (1) is

$$xy^2 - 3(y^2 - 2y + 2)e^y = c$$

for some constant c.

2.	(a)	15 points	Use the Laplace Transform to solve \langle	$\begin{cases} y'' - 3y' + 2y = \cos t \\ y(0) = 0 \\ y'(0) = 0. \end{cases}$
2.	(a)	10 points		y'(0) = 0 y'(0) = 0.

Solution: Taking the Laplace Transform of the ODE gives
$\mathcal{L}[y''] - 3\mathcal{L}[y'] + 2\mathcal{L}[y] = \mathcal{L}[\cos t]$
$\left(s^{2}Y - sy(0) - y'(0)\right) - 3\left(sY - y(0)\right) + 2Y = \frac{s}{s^{2} + 1}$
$(s^2 - 3s + 2)Y = \frac{s}{s^2 + 1}$
$Y = \frac{s}{(s^2 + 1)(s^2 - 3s + 2)}$
$=\frac{s}{(s^2+1)(s-2)(s-1)}$
$= \frac{As+B}{s^2+1} + \frac{C}{s-2} + \frac{D}{s-1}$
$= (As+B)(s-2)(s-1) + C(s^{2}+1)(s-1) + D(s^{2}+1)(s-2)$
$(s^2+1)(s-2)(s-1)$
$(A = \frac{1}{10}, B = -\frac{3}{10}, C = \frac{2}{5}, D = -\frac{1}{2})$
$=\frac{\frac{1}{10}s - \frac{3}{10}}{s^2 + 1} + \frac{\frac{2}{5}}{s - 2} - \frac{\frac{1}{2}}{s - 1}$
$= \frac{1}{10} \left(\frac{s}{s^2 + 1} \right) - \frac{3}{10} \left(\frac{1}{s^2 + 1} \right) + \frac{2}{5} \left(\frac{1}{s - 2} \right) - \frac{1}{2} \left(\frac{1}{s - 1} \right)$
$= \frac{1}{10} \mathcal{L} \left[\cos t \right] - \frac{3}{10} \mathcal{L} \left[\sin t \right] + \frac{2}{5} \mathcal{L} \left[e^{2t} \right] - \frac{1}{2} \mathcal{L} \left[e^{t} \right].$
Therefore the solution to the IVP is

$$y(t) = \frac{1}{10}\cos t - \frac{3}{10}\sin t + \frac{2}{5}e^{2t} - \frac{1}{2}e^{t}$$

(b) 10 points Find the inverse Laplace Transform of $F(s) = \frac{2s-5}{s^2+2s+10}$.

Solution:

First we calculate that

$$F(s) = \frac{2s-5}{s^2+2s+10} = \frac{2s-5}{(s+1)^2+3^2} = \frac{2s+2}{(s+1)^2+3^2} + \frac{-7}{(s+1)^2+3^2}$$
$$= 2\left(\frac{s+1}{(s+1)^2+3^2}\right) - \frac{7}{3}\left(\frac{3}{(s+1)^2+3^2}\right)$$
$$= 2\mathcal{L}\left[e^{-t}\cos 3t\right] - \frac{7}{3}\mathcal{L}\left[e^{-t}\sin 3t\right].$$

Therefore

$$f(t) = \mathcal{L}^{-1}[F](t) = 2e^{-t}\cos 3t - \frac{7}{3}e^{-t}\sin 3t.$$

3. 25 points Solve $\mathbf{x}' = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \mathbf{x}$.

Solution: Clearly the eigenvalues of the matrix $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ are $r_1 = r_2 = 1$, since the matrix is triangular.

We calculate that

$$\mathbf{0} = (A - rI)\xi = \begin{bmatrix} 1 - 1 & 1 \\ 0 & 1 - 1 \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} = \begin{bmatrix} \xi_2 \\ 0 \end{bmatrix} \implies \xi_2 = 0.$$

Therefore $\xi = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is the only linearly independent eigenvector of A. $\mathbf{x}^{(1)}(t) = \xi e^{rt} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} e^t$ is one solution of the linear system.

For our second solution, we take $\mathbf{x}^{(2)}(t) = \xi t e^t + \eta e^t$ where η solves $(A - rI)\eta = \xi$. In other words; where η is a generalised eigenvector of A.

We calculate that

$$\begin{bmatrix} 1\\ 0 \end{bmatrix} = \xi = (A - rI)\eta = \begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix} \begin{bmatrix} \eta_1\\ \eta_2 \end{bmatrix} = \begin{bmatrix} \eta_2\\ 0 \end{bmatrix} \implies \eta_2 = 1$$

Since η_1 can be any number, so we may choose $\eta_1 = 0$. Then we have $\eta = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $\mathbf{x}^{(2)}(t) = \xi t e^t + \eta e^t = \begin{bmatrix} 1 \\ 0 \end{bmatrix} t e^t + \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^t$.

Therefore the general solution to the linear system is

$$\mathbf{x}(t) = c_1 \begin{bmatrix} 1\\ 0 \end{bmatrix} e^t + c_2 \left(\begin{bmatrix} 1\\ 0 \end{bmatrix} t e^t + \begin{bmatrix} 0\\ 1 \end{bmatrix} e^t \right)$$

for constants c_1 and c_2 .

Learning Objectives:

LO1	first order ODEs	25 points	Q1
LO2	higher order ODEs	0 points	
LO3	Laplace T.	25 points	Q2
LO4	systems	50 points	Q3 & Q4

$$\begin{aligned} \mathbf{x} = \mathbf{x} \quad \text{inv} \quad \mathbf{x} \quad \mathbf{x$$

it follows that a fundamental matrix for this linear system is

 $\Psi(t) = \begin{bmatrix} \mathbf{u}(t) & \mathbf{v}(t) \end{bmatrix} = \begin{bmatrix} e^{2t} \cos t & e^{2t} \sin t \\ -e^{2t} \sin t & e^{2t} \cos t \end{bmatrix}.$