Cep telefonunuzu gözetmene teslim ediniz. Deposit your cell phones to an invigilator. 21 March 2019 [16:00-17:10] MATH216, 1st Midterm Exam Page 1 of 4

Forename:		Question	Points	Score
SURNAME:		1	28	
Student No:		2	25	
DEPARTMENT:		3	25	
TEACHER:	□ Neil Course □ Vasfı Eldem □ Hasan Özekes □ Sezgin Sezer	4	22	
SIGNATURE:		Total:	100	
 care you example particular Calculator hes, etc. a 1. Find the I (a) 14 p Soi Sin 	$F(s) = \mathcal{L}{f(t)} = \int_{0}^{\infty} e^{-st} f(t) dt = \int_{0}^{2\pi} e^{-st}(0) dt$ $= \frac{3e^{-2\pi s}}{-s} - \frac{3e^{-s(0)}}{-s} = \left[\frac{3}{s}(1-e^{-2\pi s})\right]$ $= Use a Bl cover she is correct.$ $Use a Bl cover she is correct.$	LUE ball-pet. Please n complete.	oint pen nake sure able above.	to fill the that your
(b) 14 p	bints $f(t) = te^{2t} + t\cos(3t)$.			

Solution: By the linearity of Laplace transform,

$$\begin{split} F(s) &= \mathcal{L}\{f(t)\} = \mathcal{L}\{te^{2t} + t\cos(3t)\} = \mathcal{L}\{te^{2t}\} + \mathcal{L}\{t\cos(3t)\} \\ &= -\frac{d}{ds}\mathcal{L}\{e^{2t}\} - \frac{d}{ds}\mathcal{L}\{\cos(3t)\} \\ &= -\frac{d}{ds}\frac{1}{s-2} - \frac{d}{ds}\frac{s}{s^2+9} = (s-2)^{-2} - \frac{s^2+9-2s^2}{(s^2+9)^2} \\ &= \boxed{\frac{1}{(s-2)^2} + \frac{s^2-9}{(s^2+9)^2}} \end{split}$$

13 points Use the method of Variation of Parameters to solve $y'' + y = 2 \tan t, -\pi/2 < t < \pi/2$, 2.(a)

Solution: The characteristic equation is

$$m^2 + 1 = 0$$

so we have conjugate roots $r = \pm i$. The general homogeneous solution is then

 $y = c_1 \cos t + c_2 \sin t$

with two arbitrary constants c_1 and c_2 . Using the method of variation of parameters, we look for a particular solution y_p in the form

 $y_p = v_1 \cos t + v_2 \sin t$

The two linearly independent solutions are $y_1 = \cos t$ and $y_2 = \sin t$ and their Wronskian is

$$W = \begin{vmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{vmatrix} = \cos^2 t + \sin^2 t = 1$$

We find v'_1 and v'_2 as (the Cramer rule) $v'_1 = \begin{vmatrix} 0 & \sin t \\ 2\tan t & \cos t \end{vmatrix} = -2\tan t \sin t = \frac{2\cos^2 t - 2}{\cos t} = 2\cos t - 2\sec t \text{ and } v'_2 = \begin{vmatrix} \cos t & 0 \\ -\sin t & 2\tan t \end{vmatrix}$ $= 2 \sin t.$ Integrating the last expressions, we get

$$v_1 = \int (2\cos t - 2\sec t) dt = 2\sin t - 2\ln|\sec t + \tan t|$$
 and $v_2 = \int (2\sin t) dt = -2\cos t$

Thus the general solution is

 $y = c_1 \cos t + c_2 \sin t + \cos t (2 \sin t - 2 \ln |\sec t + \tan t|) + 2 \sin t \cos t, \text{ for } -\pi/2 < t < \pi/2$

p.491, pr.86

(b) 12 points Use the method of Undetermined Coefficients to solve y''' - y' = 4t.

Solution: The characteristic equations

$$0 = r^{3} - r = r(r^{2} - 1) = r(r - 1)(r + 2)$$

has roots $r_1 = 0$, $r_2 = -1$ and $r_3 = 1$. Therefore the general solution to the homogeneous equation y'' - y' = 0 is

$$y(t) = c_1 + c_2 e^{-t} + c_3 e^t.$$

Next we must find a particular solution to the non-homogeneous equation. Since 4t is a polynomial, we try the ansatz $Y(t) = At^2 + Bt + C$. Since Y' = 2At + B and Y'' = 0, we get

$$4t = Y''' - Y = 0 - 2At - B.$$

Clearly we require A = -2 and B = 0. C could take any value, so we choose C = 0 for simplicity. Therefore

 $Y(t) = -2t^2$

is a particular solution.

The general solution to the non-homogeneous equation is thus

$$y(t) = c_1 + c_2 e^{-t} + c_3 e^t - 2t^2.$$

p.695, pr.37

3. (a) 15 points Find all solutions of the equation $\frac{dy}{dx} = \frac{y - 4x}{x - y}$.

Solution: This is a homogeneous equation which can be written as

$$\frac{dy}{dx} = \frac{(y/x) - 4}{1 - (y/x)}.$$

The change of variables v = y/x, y = xv, dy = xdv + vdx leads to

$$x\frac{dv}{dx} + v = \frac{v-4}{1-v}$$

which is a separable equation. The general solution:

$$x\frac{dv}{dx} = \frac{v-4}{1-v} - v = \frac{v^2-4}{1-v};$$
$$\frac{1-v}{v^2-4}dv = \frac{dx}{x};$$
$$\int \frac{1-v}{v^2-4}dv = \int \frac{dx}{x}$$

Partial fractions gives

$$\frac{-v+1}{v^2-4} = \frac{A}{(v-2)} + \frac{B}{v+2};$$

$$-v+1 = A(v+2) + B(v-2) \Rightarrow A = -1/4, B = -3/4;$$

$$\int \frac{-1/4}{v-2} dv + \int \frac{-3/4}{v+2} dv = \int \frac{dx}{x};$$

$$\ln(|v-2|^{-1/4}|v+2|^{-3/4}) = \ln|x| + C;$$

$$\frac{1}{(v-2)(v+2)^3} = Cx^4;$$

$$x^4(v-2)(v+2)^3 = C.$$

Note that the last formula includes the singular solutions v = 2 and v = -2. Substituting y = vx gives

$$(y-2x)(y+2x)^3 = C$$

p.583, pr.17

(b) 10 points $ty' + y = 2 \sin t, \ y(\pi/2) = 1, \ t > 0.$

Solution:

First we write the ODE in the standard form

$$y' + \left(\frac{1}{t}\right)y = \frac{2\sin t}{t}$$

We require the integrating factor

$$\mu(t) = e^{\int p(t) \, dt} = e^{\int \frac{1}{t} \, dt} = e^{\ln t} = t$$

Multiplying our ODE by t puts us back at the original ODE:

 $ty' + y = 2\sin t.$

Then we calculate that

$$ty' + y = 2\sin t$$

$$(ty)' = 2\sin t$$

$$ty = 2\int \sin t \, dt = -2\cos t + C$$

$$y = -\frac{2}{t}\cos t + \frac{C}{t}.$$

p.583, pr.17

4. (a) 12 points Find all the equilibrium solutions/critical points of y' = y(1+y). Determine whether each one is asymptotically stable, unstable or semistable.

We can see from the graph that y = -1 is an asymptotically stable equilibrium solution, while y = 0 is an unstable equilibrium solution.

p.573, pr.38

Solution														_				
Solution:	1	1	1	1	1	1	1	1 4	y	1	1	1	1	1	1	1	1	
	1	1	1	1	1	1	1	1	t	1	1	1	1	1	1	1	1	
	1	1	1	1	1	1	1	1 3	ŧ	1	1	1	1	1	1	1	1	
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	1	1	1	1	1	1	1	1 2	ŧ	1	1	1	1	1	1	1	1	
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	1	1	1	1	1	1	1	11	1	1	1	1	1	1	1	1	1	
	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	
	<u>→</u> -4	\rightarrow	→ -3	→	→ -2		→ -1		> -	→	→ 1	7	2	\rightarrow	3		$\xrightarrow{x}{4}$	
	*	*	>	*	1	*	1	~	* -	*	*	*	*	1	*	>	\rightarrow	
	\rightarrow	\rightarrow	→	→	\rightarrow	→	→	→ 1-	* -	→	→	\rightarrow	\rightarrow	→	\rightarrow	\rightarrow	→	
	1	1	1	1	/	1	1	11			/	1	1	1	1	-	1	
	1	1	1	1	1	1	1	1-2		1	1	1	1	1	1	1	1	
	1	1	1	1	1	1	1	1	[1	1	1	1	1	1	1	1	
	1	Î	Î	1	Î	Î	1	1 -3	Î	1	Î	1	Î	1	1	1	Î	
	Ĩ	Î	Î	Î	Î	Î	Î	Î		1 •	Î	1	Î	Î	Î	Î	Î	
	ĩ	Î	Ĩ	î	ſ	Ĩ	ſ	[-4	f	Ĩ	Î	Ĩ	Ĩ	Ĩ	Î	ĩ	Î	