

OKAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK TEMEL BİLİMLERİ BÖLÜMÜ

SON TESLİM TARİHİ: Çarşamba 2 Kasım 2016 saat 10:00'e kadar.

Egzersiz 3 (Norms). [10p] Show that

$$|||f|| - ||g||| \le ||f - g||.$$

Egzersiz 4 (Banach Spaces). Define

$$\left\|a\right\|_{\infty} := \sup_{n \in \mathbb{N}} \left|a_n\right|$$

and

$$\ell^{\infty}(\mathbb{N}) := \{ a = (a_n)_{n=1}^{\infty} \subseteq \mathbb{C} : \|a\|_{\infty} < \infty \}.$$

- (a) [10p] Show that $\ell^{\infty}(\mathbb{N})$ is a vector space.
- (b) [10p] Show that $\|\cdot\|_{\infty}$ is a norm on $\ell^{\infty}(\mathbb{N})$.
- (c) [30p] Show that $(\ell^{\infty}(\mathbb{N}), \|\cdot\|_{\infty})$ is a Banach space.
- (d) [40p] Show that $\ell^{\infty}(\mathbb{N})$ is not separable. [HINT: Consider sequences which take only the value one and zero. How many are there? What is the distance between two such sequences?]

Ödev 1'in çözümleri

1. (a) Since $d(x, y) \leq d(x, z) + d(y, z)$ by definition, we have that $d(x, y) - d(y, z) \leq d(x, z)$. Similarly $-d(x, y) + d(y, z) \leq d(x, z)$, and multiplying by -1 gives $d(x, y) - d(y, z) \geq -d(x, z)$. Therefore $|d(x, y) - d(y, z)| \leq d(x, z)$. (b) Using part (a) and the triangle rule for real numbers, we calculate that $|d(x, y) - d(x', y')| = |d(x, y) - d(x', y) + d(x', y) - d(x', y')| \leq |d(x, y) - d(x', y)| + |d(x', y) - d(x', y')| \leq d(x, x') + d(y, y')$.

(c) We know that $U \subseteq V \subseteq X$, that $\overline{U} \cap V = V$ (so $\overline{U} \supseteq V$) and that $\overline{V} = X$. So $\overline{\overline{U}} = \overline{V} = X$. But $\overline{\overline{U}} = \overline{U}$, so $\overline{U} = X$ and U is dense in X.

2. (a) $X \setminus \overline{A} = X \cap (\overline{A})^c = X \cap (A^c)^o = (X \cap A^c)^o = (X \setminus A)^o$ and (b) $X \setminus A^o = X \cap (A^o)^c = X \cap \overline{A^c} = \overline{X \cap A^c} = \overline{X \setminus A^c}$.