

OKAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK TEMEL BİLİMLERİ BÖLÜMÜ

2016–17 MAT461 Fonksiyonel Analiz I – Ödev 3 N. Cou

SON TESLİM TARİHİ: Çarşamba 30 Kasım 2016 saat 10:00'e kadar.

Egzersiz 5 (Norms).

(a) [20p] Let $(X, \langle \cdot, \cdot \rangle)$ be a Hilbert space and let $\|\cdot\| = \sqrt{\langle \cdot, \cdot \rangle}$. Let $f, g \in X$ and $g \neq 0$. Show that

 $\|f+g\| = \|f\| + \|g\| \qquad \Longleftrightarrow \qquad f = \alpha g \quad \text{for some } \alpha \in \mathbb{R}, \, \alpha \geq 0.$

(b) [20_p] Show that the maximum norm, $\|\cdot\|_{\infty}$, on $C([0,1];\mathbb{R})$ does not satisfy the parallelogram law.

Egzersiz 6 (Integral Operators). Let $k : [0,1] \times [0,1] \to \mathbb{C}$ be a continuous function. We can define an operator, K, by

$$(Kf)(x) = \int_0^1 k(x, y) f(y) \, dy$$

for all $f \in C([0, 1])$.

- (a) [15p] Show that $K: (C([0,1]), \|\cdot\|_{\infty}) \to (C([0,1]), \|\cdot\|_{\infty})$ is a bounded operator.
- (b) [15p] Show that $K: (C([0,1]), \|\cdot\|_{L^2}) \to (C([0,1]), \|\cdot\|_{L^2})$ is a bounded operator. [HINT: If g, h are continuous, then $|\int \bar{g}h| \le (\int |g|^2)^{\frac{1}{2}} (\int |h|^2)^{\frac{1}{2}}$ by Cauchy-Schwarz. Setting $g \equiv 1$ then gives $? \le ?$]

Egzersiz 7 (Multiplication of Operators). Let $(X, \|\cdot\|_X)$ be a normed vector space, let

 $\mathcal{B}(X) := \{ \text{all bounded linear operators } X \to X \}$

and let

$$||A|| := \sup_{\substack{f \in \mathcal{D}(A) \\ ||f||_{X} = 1}} ||Af||_{X}$$

be the operator norm.

- (a) [15p] Show that $||AB|| \leq ||A|| ||B||$ for all $A, B \in \mathcal{B}(X)$.
- (b) [15p] Show that multiplication is continuous: In other words; show that if $A_n, A, B_n, B \in \mathcal{B}(X), A_n \to A$ and $B_n \to B$ then $A_n B_n \to A B$.

Ödev 2'nin çözümleri

- 3. $||f|| = ||f g + g|| \le ||f g|| + ||g||$ so $||f|| ||g|| \le ||f g||$. Similarly $||g|| ||f|| \le ||g f|| = ||f g||$. Therefore $|||f|| ||g||| \le ||f g||$
- 4. (a) First we must show that $\ell^{\infty}(\mathbb{N})$ is a vector space: If $a = (a_j)_{j=1}^{\infty}$ and $b = (b_j)_{j=1}^{\infty}$ are elements of $\ell^{\infty}(\mathbb{N})$, and if $\lambda \in \mathbb{C}$, then $||a + \lambda b||_{\infty} = \sup_{j} |a_j + \lambda b_j| \leq \sup_{j} |a_j| + |\lambda| \sup_{j} |b_j| = ||a||_{\infty} + |\lambda| ||b||_{\infty} < \infty$, so $a + \lambda b \in \ell^{\infty}(\mathbb{N})$.
 - (b) Clearly ||a||_∞ > 0 for all a ∈ ℓ[∞](N), a ≠ 0 (i.e. not all a_n = 0). The triangle inequality was shown in part (a). Finally ||λa||_∞ = sup_j |λa_j| = |λ| sup_j |a_j| = |λ| ||a||_∞ for all a ∈ ℓ[∞](N) and for all λ ∈ C. Therefore ||·||_∞ is a norm on ℓ[∞](N).
 - (c) We must show that $\ell^{\infty}(\mathbb{N})$ is complete: Let $a^n = (a_j^n)_{j=1}^{\infty}$ be a Cauchy sequence in $\ell^{\infty}(\mathbb{N})$ (i.e. a sequence of sequences). Let $\varepsilon > 0$. Then there exists $N \in \mathbb{N}$ such that $m, n > N \implies ||a^m a^n||_{\infty} < \varepsilon \implies ||a_j^m a_j^n|| < \varepsilon$ for all j. For each j, $(a_j^n)_{n=1}^{\infty}$ is a Cauchy sequence in \mathbb{C} . Since \mathbb{C} is complete, there exists a limit $a_j = \lim_{n \to \infty} a_j^n$. Since $|a_j^m a_j^n| < \varepsilon$ for all m, n > N and all j, we must also have that $|a a_j^n| \leq \varepsilon$ for all n > N and all j. It follows that $||a a^n||_{\infty} = \sup_j |a_j a_j^n| \leq \varepsilon$ for all n > N and so $||a||_{\infty} \leq ||a a^n||_{\infty} + ||a^n||_{\infty} < \infty$. Therefore $a \in \ell^{\infty}(\mathbb{N})$ and so $\ell^{\infty}(\mathbb{N})$ is complete.
 - (d) Let $Q = \{a = (a_j)_{j=1}^{\infty} \in \ell^{\infty}(\mathbb{N}) : a_j \in \{0,1\} \forall j\} \subseteq \ell^{\infty}(\mathbb{N})$. If $a, b \in Q$ and $a \neq b$ then we must have that $||a b||_{\infty} = 1$. Suppose that Q is countable. Then we can label every element of Q as $a^1, a^2, a^3, a^4, \ldots$. Now define a new sequence b as follows: if $a_j^j = 1$ then define $b_j = 0$, otherwise define $b_j = 1$. Then for every n, $b \neq a^n$ (because $b_n \neq a_n^n$) so b is not in our list $a^1, a^2, a^3, a^4, \ldots$. However, every term in the sequence of b is either 1 or 0 so b must be in Q. Contradiction. Therefore Q is uncountable.

Finally suppose that $P = \{p^1, p^2, p^3, \ldots\}$ is a countable, dense subset of $\ell^{\infty}(\mathbb{N})$ and let $0 < \varepsilon < \frac{1}{10}$. Then for every $a \in Q$ there must exists some $p \in P$ such that $||a - p||_{\infty} < \varepsilon$. But since $a, b \in Q \implies ||a - b||_{\infty} = 1$, each $p \in P$ can only be close to at most one element in Q. But Q is uncountable so P must be uncountable as well. Contradiction. Therefore $\ell^{\infty}(\mathbb{N})$ is not separable.