

OKAN ÜNİVERSİTESI MÜHENDİSLİK FAKÜLTESI MÜHENDİSLİK TEMEL BİLİMLERİ BÖLÜMÜ

2016-17

MAT461 Fonksiyonel Analiz I – Ödev 4

N. Course

SON TESLİM TARİHİ: Çarşamba 21 Aralık 2016 saat 10:00'e kadar.

Egzersiz 8 (Unitary Operators). [25p] Let X be a Hilbert space. Suppose that $U: X \to X$ is unitary and $M \subseteq X$. Show that $U(M^{\perp}) = (UM)^{\perp}$.

Egzersiz 9 (Orthogonal Projection). [15p] Let X be a Hilbert space and $M \subseteq X$ be a subspace. Let $\Pi_M : X \to M$ be orthogonal projection. Suppose that $\Pi_M \neq 0$ (in other words, suppose that $\exists f \in X$ such that $\Pi_M f \neq 0$). Show that $\|\Pi_M\| = 1$.

Egzersiz 10 (Uniqueness of Orthogonal Projection). [5×6p] Let X be a Hilbert space. Suppose that $P \in \mathcal{B}(X)$ satisfies

$$P^2 = P$$
 and $\langle Pf, q \rangle = \langle f, Pq \rangle \ \forall f, q \in X.$

Let $M := \operatorname{Ran}(P)$ and let $\Pi_M : X \to M$ denote orthogonal projection. Show that

(a) Pf = f for all $f \in M$;

(d) $g \in M^{\perp} \implies Pg = 0$; and

- (b) M is closed;
- (c) $g \in M^{\perp} \implies Pg \in M^{\perp}$;

(e) $P = \Pi_{M}$.

Egzersiz 11 (Adjoints). Let X be a Hilbert space and let $u, v \in X$. Let $A: X \to X$ be an operator defined by

$$Af := \langle u, f \rangle v.$$

- (a) [10p] Show that A is bounded.
- (b) [10p] Calculate ||A||.
- (c) [10p] Calculate the adjoint of A.

Ödev 3'ün çözümleri

- 5. (a) Given that $||f+g||^2 = \langle f+g, f+g \rangle = ||f||^2 + \langle f, g \rangle + \langle g, f \rangle + ||g||^2$ and $(||f|| + ||g||)^2 = ||f||^2 + 2 ||f|| ||g|| + ||g||^2$, we can see that ||f+g|| = ||f|| + ||g|| if and only if $2 \operatorname{Re} \langle f, g \rangle = \langle f, g \rangle + \langle g, f \rangle = 2 ||f|| ||g||$.
 - But Re $\langle f,g\rangle \leq |\langle f,g\rangle| \leq \|f\| \|g\|$ by the Cauchy-Schwarz Inequality. The second " \leq " is an "=" if and only if $f=\alpha g$ for some $\alpha\in\mathbb{C}$ (by the Cauchy-Schwarz Inequality). Since $\langle \alpha g,g\rangle=\bar{\alpha}\,\|g\|^2$, the first " \leq " is an "=" if and only if $\alpha\in\mathbb{R}$ and $\alpha\geq0$.
 - (b) Define $f,g:[0,1] \to \mathbb{R}$ by f(x)=x and g(x)=2x-1. Then $\|f+g\|_{\infty}=|f(1)+g(1)|=2$ and $\|f-g\|_{\infty}=|f(0)-g(0)|=1$, so $\|f+g\|_{\infty}^2+\|f-g\|_{\infty}^2=9$. However $\|f\|_{\infty}=1$ and $\|g\|_{\infty}=1$, so $2\|f\|_{\infty}^2+2\|g\|_{\infty}^2=8\neq \|f+g\|_{\infty}^2+\|f-g\|_{\infty}^2$. Therefore the maximum norm $\|\cdot\|_{\infty}$ does not satisfy the parallelogram law.
- 6. (a) First, $k:[0,1]\times[0,1]\to\mathbb{C}$ is continuous, so $\|k\|_{\infty}<\infty$. Let $f\in C([0,1])$. Then $|(Kf)(x)|=\left|\int_0^1 k(x,y)f(y)\;dy\right|\leq \int_0^1 |k(x,y)|\,|f(y)|\;dy\leq \|k\|_{\infty}\,\|f\|_{\infty}$. Therefore $\|K\|=\sup_{f\in\mathcal{D}(K),\;\|f\|_{\infty}=1}\|(Kf)(x)\|_{\infty}\leq \|k\|_{\infty}<\infty$. So K is a bounded operator.
 - (b) Let $f \in C([0,1])$. Then $\|(Kf)(x)\|_{L^2}^2 = \int_0^1 |(Kf)(x)|^2 dx = \int_0^1 \left| \int_0^1 k(x,y) f(y) dy \right|^2 dx$ $\leq \int_0^1 \left(\int_0^1 |k(x,y)| |f(y)| dy \right)^2 dx \leq \int_0^1 \int_0^1 |k(x,y)|^2 |f(y)|^2 dy dx \leq \|k\|_{\infty}^2 \int_0^1 \int_0^1 |f(y)|^2 dy dx = \|k\|_{\infty}^2 \int_0^1 \|f(y)\|_{L^2}^2 dx$ $= \|k\|_{\infty} \|f(y)\|_{L^2}^2$. Therefore $\|K\| \leq \|k\|_{\infty} < \infty$ as above. So K is a bounded operator.
- 7. (a) By definition of the operator norm, $\|Bf\|_X \leq \|B\| \|f\|_X$ for all $f \in X$. But $Bf \in X$, so $\|ABf\|_X \leq \|A\| \|Bf\|_X \leq \|A\| \|B\| \|f\|_X$ for all $f \in X$. It follows that $\|AB\| = \sup_{f \in \mathcal{D}(AB), \|f\|_X = 1} \|ABf\|_X \leq \sup_{f \in \mathcal{D}(AB), \|f\|_X = 1} \|A\| \|B\| \|f\|_X \leq \|A\| \|B\|$.
 - (b) Let $\varepsilon > 0$. Suppose $A_n \to A$ and $B_n \to B$. Then $M := \max_n \{\|B_n\|, \|B\|\} < \infty$. There exists N such that $\|A_n A\| < \frac{\varepsilon}{2M}$ and $\|B_n B\| < \frac{\varepsilon}{2\|A\|}$ for all n > N. But then $\|A_n B_n f ABf\|_X \le \|A_n B_n f AB_n f\|_X + \|AB_n f ABf\|_X \le \|A_n A\| \|B_n f\|_X + \|A\| \|B_n f Bf\|_X \le \|A_n A\| \|B_n f\|_X + \|A\| \|B_n B\| \|f\|_X < \frac{\varepsilon}{2M} M \|f\|_X + \|A\| \frac{\varepsilon}{2\|A\|} \|f\|_X = \varepsilon \|f\|_X$ for all n > N. Therefore $n > N \implies \|A_n B_n AB\| < \varepsilon$. So $A_n B_n \to AB$.