OKAN ÜNİVERSİTESI MÜHENDİSLİK-MİMARLIK FAKÜLTESI MÜHENDİSLİK TEMEL BİLİMLERİ BÖLÜMÜ

03.01.2013 MAT 461 – Fonksiyonel Analiz I – Final Sınavın Çözümleri N. Course

Question 1. Let X be a vector space

(a) [4p] Give the definition of a *norm* on X.

A *norm* is a function $\|\cdot\|: X \to \mathbb{R}$ which satisfies

- (i) ||f|| > 0 for all $f \in X$, $f \neq 0$;
- (ii) $\|\alpha f\| = |\alpha| \|f\|$ for all $f \in X$, $\alpha \in \mathbb{C}$ (or $\alpha \in \mathbb{R}$ if X is a real vector space);
- (iii) $||f+g|| \le ||f|| + ||g||$ for all $f, g \in X$.

Consider the set $\ell^1(\mathbb{N}) := \{a = (a_j)_{j=1}^\infty \subseteq \mathbb{C} : \|a\|_1 < \infty\}$ where $\|a\|_1 := \sum_{j=1}^\infty |a_j|$.

(b) [5p] Show that $\ell^1(\mathbb{N})$ is a vector space

Let $a,b\in \ell^1(\mathbb{N})$ and $\lambda\in\mathbb{C}.$ Then $\|a\|_1<\infty$ and $\|b\|_1<\infty.$ So

$$||a + \lambda b||_1 = \sum_j |a_j + \lambda b_j| \le \sum_j |a_j| + |\lambda| |b_j| = \sum_j |a_j| + |\lambda| \sum_j |b_j| = ||a||_1 + |\lambda| ||b||_1 < \infty.$$

Therefore $a + \lambda b \in \ell^1(\mathbb{N})$. Hence $\ell^1(\mathbb{N})$ is a vector space.

(c) [5p] Show that $\|\cdot\|_1$ is a norm on $\ell^1(\mathbb{N})$.

I proved the triangle inequality in part (b). (i) Suppose $a \in \ell^1(\mathbb{N})$ and $a \neq 0$. Then $\exists j$ such that $|a_j| > 0$. So $||a||_1 \geq |a_j| > 0$. (ii) Finally suppose that $\alpha \in \mathbb{C}$ and $a \in \ell^1(\mathbb{N})$. Then $||\alpha a||_1 = \sum_j |\alpha a_j| = |\alpha| \sum_j |a_j| = |\alpha| ||a||_1$.

Therefore $\|\cdot\|_1$ is a norm on $\ell^1(\mathbb{N})$.

(d) [2p] Give the definition of a Banach space.

A Banach space is a complete normed vector space.

(e) [9p] Show that $(\ell^1(\mathbb{N}), \|\cdot\|_1)$ is a Banach space.

I have already proved that $\ell^1(\mathbb{N})$ is a vector space and that $\|\cdot\|_1$ is a norm on $\ell^1(\mathbb{N})$. It remains to prove that $\ell^1(\mathbb{N})$ is complete with this norm.

Let $x^n=(x_j^n)_{j=1}^\infty$ be a Cauchy sequence in $\ell^1(\mathbb{N})$. So for any $\varepsilon>0$ we can find an $N=N(\varepsilon)$ such that $\|x^m-x^n\|_1<\varepsilon$ for m,n>N. This implies that $\left|x_j^m-x_j^n\right|<\varepsilon$ for all j. Thus, for each fixed j, the sequence $(x_j^n)_{n=1}^\infty$ is a Cauchy sequence in \mathbb{C} . Since \mathbb{C} is complete, this sequence has a limit: Define $x_j:=\lim_{n\to\infty}x_j^n$.

Now consider $\sum_{j=1}^k \left| x_j^m - x_j^n \right| < \varepsilon$. Letting $m \to \infty$ gives us $\sum_{j=1}^k \left| x_j - x_j^n \right| \le \varepsilon$. This is true for all k. So letting $k \to \infty$ we have $\|x - x^n\|_1 \le \varepsilon$. Hence $(x - x^n) \in \ell^1(\mathbb{N})$. Since $x^n \in \ell^1(\mathbb{N})$, it follows that $x = x^n + (x - x^n) \in \ell^1(\mathbb{N})$ also.

Therefore, every Cauchy sequence in $\ell^1(\mathbb{N})$ is convergent. Hence $\ell^1(\mathbb{N})$ is complete.

Question 2 (Orthonormal sets). Let X be a Hilbert space.

(a) [5p] Give the definition of an orthonormal set.

A set $\{u_i\}$ is called *orthonormal* iff

$$\langle u_j, u_k \rangle = \begin{cases} 0 & \text{if } j \neq k \\ 1 & \text{if } j = k. \end{cases}$$

Let $\{u_j\}_{j=1}^n \subseteq X$ be an orthonormal set and let $f \in X$. Define $f_{\parallel} = \sum_{j=1}^n \langle u_j, f \rangle u_j$ and $f_{\perp} = f - f_{\parallel}$.

(b) [5p] Show that

$$\langle u_i, f_{\perp} \rangle = 0$$

for all j = 1, 2, ..., n.

$$\langle u_j, f_{\perp} \rangle = \langle u_j, f \rangle - \langle u_j, f_{\parallel} \rangle = \langle u_j, f \rangle - \left\langle u_j, \sum_{k=1}^n \langle u_k, f \rangle u_k \right\rangle$$
$$= \langle u_j, f \rangle - \sum_{k=1}^n \langle u_k, f \rangle \langle u_j, u_k \rangle = \langle u_j, f \rangle - \langle u_j, f \rangle = 0$$

since $\langle u_j, u_k \rangle = 0$ if $j \neq k$ and = 1 if j = k.

(c) [5p] Use (b) to show that f_{\parallel} and f_{\perp} are orthogonal.

$$\left\langle f_{\parallel},f_{\perp}\right\rangle = \left\langle \sum_{j=1}^{n}\left\langle u_{j},f\right\rangle u_{j},f_{\perp}\right\rangle = \sum_{j=1}^{n}\left\langle u_{j},f\right\rangle \left\langle u_{j},f_{\perp}\right\rangle = 0$$

by part (b).

(d) [5p] Show that

$$||f||^2 = ||f_{\parallel} + f_{\perp}||^2 = \sum_{j=1}^n |\langle u_j, f \rangle|^2 + ||f_{\perp}||^2.$$

 $[{\it HINT: Do\ you\ remember\ Pythogora's\ Theorem?}]$

Since f_{\parallel} and f_{\perp} are orthogonal, we know by Pythogora that $\|f_{\parallel} + f_{\perp}\|^2 = \|f_{\parallel}\|^2 + \|f_{\perp}\|^2$. Moreover

$$\begin{aligned} \left\| f_{\parallel} \right\|^{2} &= \left\langle f_{\parallel}, f_{\parallel} \right\rangle = \left\langle \sum_{j=1}^{n} \left\langle u_{j}, f \right\rangle u_{j}, \sum_{k=1}^{n} \left\langle u_{k}, f \right\rangle u_{k} \right\rangle \\ &= \sum_{j=1}^{n} \sum_{k=1}^{n} \left\langle \left\langle u_{j}, f \right\rangle u_{j}, \left\langle u_{k}, f \right\rangle u_{k} \right\rangle \\ &= \sum_{j=1}^{n} \sum_{k=1}^{n} \overline{\left\langle u_{j}, f \right\rangle} \left\langle u_{k}, f \right\rangle \left\langle u_{j}, u_{k} \right\rangle = \sum_{j=1}^{n} \left| \left\langle u_{j}, f \right\rangle \right|^{2}. \end{aligned}$$

Now suppose that $g \in \text{span}\{u_j\}_{j=1}^n$. [HINT: This means that $g = g_{\parallel}$ and $g_{\perp} = 0$.]

(e) [5p] Show that

$$||f - g|| \ge ||f_{\perp}||$$
.

Since
$$(f - g) = (f - g)_{\parallel} + (f - g)_{\perp} = (f_{\parallel} - g_{\parallel}) + (f_{\perp} - g_{\perp}) = (f_{\parallel} - g_{\parallel}) + (f_{\perp} - 0)$$
, it follows that
$$\|f - g\|^2 = \|f_{\parallel} - g_{\parallel}\|^2 + \|f_{\perp}\|^2 \ge \|f_{\perp}\|^2.$$

Question 3 (The Operator Norm). Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be normed vector spaces. Let $A: X \to Y$ be an operator.

(a) [3p] Give the definition of the operator norm of A

$$\|A\| = \sup_{f \in X, \ \|f\|_X = 1} \|Af\|_Y \,.$$

(b) [5p] Let $\lambda > 0$. Suppose that $\|Af\|_Y \le \lambda \|f\|_X$ for all $f \in X$. Show that $\|A\| \le \lambda$.

$$\|A\| = \sup_{\|f\|_X = 1} \|Af\|_Y \leq \sup_{\|f\|_X = 1} \lambda \, \|f\|_X = \lambda \sup_{\|f\|_X = 1} \|f\|_X = \lambda.$$

(c) [5p] Show that $\|Af\|_Y \le \|A\| \, \|f\|_X$ for all $f \in X$.

The result is clearly true if f = 0. Suppose $f \neq 0$. Then

$$\begin{split} \|Af\|_{Y} &= \frac{\|f\|_{X}}{\|f\|_{X}} \, \|Af\|_{Y} = \|f\|_{X} \, \bigg\| \frac{1}{\|f\|_{X}} Af \bigg\|_{Y} = \|f\|_{X} \, \bigg\| A \left(\frac{f}{\|f\|_{X}} \right) \bigg\|_{Y} \\ &\leq \|f\|_{X} \, \sup_{\|g\|_{X} = 1} \|Ag\|_{Y} = \|f\|_{X} \, \|A\| \, . \end{split}$$

(d) [2p] Give the definition of a bounded operator.

A is called a bounded operator if $||A|| < \infty$.

Now suppose that $A: X \to X$ and $B: X \to X$ are bounded operators.

(e) [10p] Show that $||AB|| \le ||A|| ||B||$.

It follows by part (c) that

$$||ABf||_X \le ||A|| \, ||Bf||_X \le ||A|| \, ||B|| \, ||f||_X$$

for all f. Therefore $||AB|| \le ||A|| ||B||$ by part (b).

Question 4 (Orthonormal Bases). Let X be a Hilbert space. Let $\{u_j\}_{j\in J}$ be an orthonormal set in X.

(a) [5p] Suppose that

$$||f||^2 = \sum_{j \in J} |\langle u_j, f \rangle|^2$$

for all $f \in X$. Show that

$$\langle u_j, f \rangle = 0 \quad \forall j \in J \qquad \Longrightarrow \qquad f = 0.$$

Suppose that $\langle u_j, f \rangle = 0 \ \forall \ j \in J$. Then

$$||f||^2 = \sum_{j \in J} |\langle u_j, f \rangle|^2 = \sum_{j \in J} 0 = 0$$

which implies that f = 0.

(b) [7p] Now suppose that

$$\langle u_i, f \rangle = 0 \quad \forall j \in J \qquad \Longrightarrow \qquad f = 0$$

is true. Suppose that $Q \supseteq \{u_j\}_{j \in J}$ is an orthonormal set. Show that $Q = \{u_j\}_{j \in J}$. [HINT: Use proof by contradiction. Start by supposing that $\exists g \in Q$ such that $g \notin \{u_j\}_{j \in J}$.]

Suppose that $Q \neq \{u_j\}_{j \in J}$. Then there exists $g \in Q \setminus \{u_j\}_{j \in J}$ where $g \neq 0$. However, since Q is orthonormal, we know that $\langle u_j, g \rangle = 0$ for all $j \in J$. By the assumption in the question, this implies that g = 0. Contradiction.

Now suppose that:

- $\{u_i\}_{i\in J}$ is an orthonormal basis of X;
- $A, B \in \mathcal{B}(X)$
- we define $A_{jk} := \langle u_j, Au_k \rangle$ and $B_{jk} := \langle u_j, Bu_k \rangle$, for all $j, k \in J$.
- (c) [13p] If $A_{jk} = B_{jk}$ for all $j, k \in J$, show that A = B. [HINT: By a theorem from the course: $\langle u_j, f \rangle = 0 \ \forall j \implies f = 0$. Use this to show that $(A - B)g = 0 \ \forall g \in X$.]

Let $g \in X$. Since $\{u_i\}_{i \in J}$ is an orthonormal basis, we know that

$$g = \sum_{k} \langle u_k, g \rangle u_k.$$

Now, for any $j \in J$, we have that

$$\langle u_j, (A - B)g \rangle = \langle u_j, Ag \rangle - \langle u_j, Bg \rangle = \sum_k \langle u_k, g \rangle \langle u_j, Au_k \rangle - \sum_k \langle u_k, g \rangle \langle u_j, Bu_k \rangle$$
$$= \sum_k \langle u_k, g \rangle A_{jk} - \sum_k \langle u_k, g \rangle B_{jk} = \sum_k \langle u_k, g \rangle (A_{jk} - B_{jk}) = 0.$$

Then by the hint, it follows that (A - B)g = 0. Since this is true for all g, we must have that A = B.

Question 5 (Adjoints of Operators). Let X be a Hilbert space and let $\mathcal{B}(X) = \{A : X \to X : A \text{ is linear and bounded}\}.$

(a) [5p] Let $A \in \mathcal{B}(X)$ be an operator. Give the definition of the adjoint of A.

The adjoint of A is the unique operator $A^* \in \mathcal{B}(X)$ such that

(b) [5p] Show that $(AB)^* = B^*A^*$ for all $A, B \in \mathcal{B}(X)$.

Let $A, B \in \mathcal{B}(X)$. Then

$$\langle (AB)^*x, y \rangle = \langle x, ABy \rangle = \langle A^*x, By \rangle = \langle B^*A^*x, y \rangle$$

for all $x, y \in X$. Therefore $(AB)^* = B^*A^*$.

(c) [5p] Now let $u, v \in X$. Define an operator $E: X \to X$ by

$$Ef = \langle u, f \rangle v.$$

Calculate E^* .

Since

$$\left\langle E^{*}g,f\right\rangle =\left\langle g,Ef\right\rangle =\left\langle g,\left\langle u,f\right\rangle v\right\rangle =\left\langle u,f\right\rangle \left\langle g,v\right\rangle =\left\langle \overline{\left\langle g,v\right\rangle }u,f\right\rangle =\left\langle \left\langle v,g\right\rangle u,f\right\rangle$$

for all $f, g \in X$, we can see that E^* is given by

$$E^*f = \langle v, f \rangle u.$$

(d) [10p] Show that

$$Ker(A^*) = Ran(A)^{\perp}$$

for all $A \in \mathcal{B}(X)$.

Let $A \in \mathcal{B}(X)$ and $f \in X$. Since

$$f \in \operatorname{Ker}(A^*) \iff A^*f = 0$$

$$\iff \langle A^*f, g \rangle = 0 \quad \forall g \in X$$

$$\iff \langle f, Ag \rangle = 0 \quad \forall g \in X$$

$$\iff \langle f, h \rangle = 0 \quad \forall h \in \operatorname{Ran}(A)$$

$$\iff f \in \operatorname{Ran}(A)^{\perp},$$

it follows that

$$Ker(A^*) = Ran(A)^{\perp}$$
.