

2014.01.08 MAT 461 – Fonksiyonel Analiz I – Final Sınavın Çözümleri N. Course

Soru 1 (Compact Operators). Let X, Y and Z be normed spaces.

(a) [4p] Give the definition of a *compact* operator $K: X \to Y$.

An operator K is called a *compact* operator iff, for all bounded sequences $(x_n) \subseteq X$ there exists a subsequence (x_{n_j}) such that $(Kx_{n_j}) \subseteq Y$ is convergent.

(b) [3p] Give the definition of a *bounded* operator $B: X \to Y$.

An operator B is called *bounded* iff $||B|| < \infty$.

Let $\mathcal{B}(X,Y) = \{A : X \to Y : A \text{ is linear and bounded}\}\$ and $\mathcal{K}(X,Y) = \{A : X \to Y : A \text{ is linear and compact}\}.$

(c) [9p] Show that $\mathcal{K}(X, Y) \subseteq \mathcal{B}(X, Y)$. [HINT: In other words: Show that every compact operator is bounded.]

Suppose that $A \in \mathcal{K}(X, Y)$ is not bounded. Then $\forall n \in \mathbb{N}, \exists a \text{ unit vector } u_n \text{ such that } ||Au_n|| \geq n$. Since the sequence $\{u_n\}$ is bounded and since A is compact, $\exists a \text{ convergent subsequence } \{Au_{n_j}\}$. But this contradicts $||Au_n|| \geq n$. So A must be bounded.

(d) [9p] Let $K \in \mathcal{K}(X, Y)$ and $B \in \mathcal{B}(Y, Z)$. Show that $(BK) \in \mathcal{K}(X, Z)$.

Let f_n be any bounded sequence in X. Since K is compact, \exists a subsequence f_{n_j} such that Kf_{n_j} is convergent in Y. Since B is bounded (and hence continuous), it follows that BKf_{n_j} is convergent in Z. Therefore BK is compact.

Soru 2 (Orthonormal Bases). Let X be a Hilbert space.

(a) [4p] Give the definition of an orthonormal set.

A set $\{u_j\}_{j\in J} \subset X$ is called an *orthonormal set* if and only if $\langle u_j, u_j \rangle = \int 1, \quad \text{if } j = k$

$$\langle u_j, u_k \rangle = \begin{cases} 1, & \text{if } j = k \\ 0, & \text{if } j \neq k. \end{cases}$$

(b) [3p] Give the definition of an *orthonormal basis*.

An orthonormal set is called an *orthonormal basis* for X, iff every $f \in X$ can be written as

$$f = \sum_{j \in J} \langle u_j, f \rangle u_j.$$

For the rest of this question, let $\{u_j\}_{j\in J}$ be an orthonormal set in X.

(c) [8p] Suppose that

$$\left\|f\right\|^{2} = \sum_{j \in J} \left|\langle u_{j}, f \rangle\right|^{2}$$

for all $f \in X$. Show that

$$\langle u_j, f \rangle = 0 \quad \forall j \in J \qquad \Longrightarrow \qquad f = 0.$$

If $\langle u_j, f \rangle = 0$ for all $j \in J$, then we have that $||f||^2 = \sum_{j \in J} |\langle u_j, f \rangle|^2 = 0$ which implies that f = 0.

(d) [10p] Now suppose that

$$\langle u_i, f \rangle = 0 \quad \forall j \in J \qquad \Longrightarrow \qquad f = 0$$

is true. Suppose that $Q \supseteq \{u_j\}_{j \in J}$ is an orthonormal set. Show that $Q = \{u_j\}_{j \in J}$.

We start by supposing that $\exists g \in Q$ such that $g \notin \{u_j\}_{j \in J}$. Since Q is orthonormal, g is a unit vector. But then $\langle u_j, g \rangle = 0$ for all j because Q is orthonormal. It follows by the assumption in the question that we must have g = 0. Contradiction.

Soru 3 (Unitary Operators). Let $(X, \langle \cdot, \cdot \rangle_X)$ and $(Y, \langle \cdot, \cdot \rangle_Y)$ be Hilbert spaces. Define $\|\cdot\|_X = \sqrt{\langle \cdot, \cdot \rangle_X}$ and $\|\cdot\|_Y = \sqrt{\langle \cdot, \cdot \rangle_Y}$ as usual.

- (a) [5p] Give the definition of a unitary operator, $U: X \to Y$.
 - U is called *unitary* iff
 - (a) U is a bijection; and
 - (b) $\langle Uf, Ug \rangle_Y = \langle f, g \rangle_X$ for all $f, g \in X$.
- (b) [5p] Suppose that the (linear) operator $A: X \to Y$ satisfies $||Af||_Y = ||f||_X$ for all $f \in X$. Show that A is an injection.

Let $f, g \in X$. Suppose Af = Ag. Then

$$0 = ||Af - Ag|| = ||A(f - g)|| = ||f - g||.$$

Therefore f = g. This proves that A is an injection.

(c) [5p] Suppose that the (linear) operator $A: X \to Y$ is a surjection and satisfies $||Af||_Y = ||f||_X$ for all $f \in X$. Show that A is unitary.

Follows by part (b) and the Parallelogram Law.

Now suppose that X = Y.

(d) [10p] Suppose $U: X \to X$ is unitary and $M \subseteq X$. Show that

$$U(M^{\perp}) = (UM)^{\perp}.$$

First, note that since U is a bijection, $\forall k \in X, \exists f \in X \text{ such that } k = Uf$. Now

 $Uf \in U(M^{\perp}) \iff f \in M^{\perp}$ $\iff \langle g, f \rangle = 0 \; \forall g \in M$ $\iff \langle Ug, Uf \rangle = 0 \; \forall g \in M \quad \text{(since } U \text{ is unitary)}$ $\iff \langle h, Uf \rangle = 0 \; \forall h \in UM$ $\iff Uf \in (UM)^{\perp}.$

Therefore $U(M^{\perp}) = (UM)^{\perp}$.

Soru 4 (Eigenvalues and Eigenvectors). Let X be a Hilbert space.

(a) [4p] Give the definition of a symmetrical operator.

An operator $A: \mathfrak{D}(A) \subseteq X \to X$ is called *symmetrical* iff its domain is dense and

 $\langle g, Af \rangle = \langle Ag, f \rangle$

for all $f, g \in \mathfrak{D}(A)$.

(b) [4p] Give the definitions of an *eigenvalue* and an *eigenvector*, of an operator $A : \mathfrak{D}(A) \subseteq X \to X$.

 $\lambda \in \mathbb{C}$ is called an *eigenvalue* of A iff $\exists u \in \mathfrak{D}(A)$ such that

 $Au = \lambda u.$

The vector u is called an *eigenvector* corresponding to λ .

For the rest of this question, suppose that:

- A is a symmetrical operator; $\mu \in \mathbb{C}$ is an eigenvalue of A;
- $\lambda \in \mathbb{C}$ is an eigenvalue of A;
- v is an eigenvector of A corresponding
- u is an eigenvector of A corresponding to λ ;
- ||u|| = 1;

- to μ ; • ||v|| = 1;
- $\lambda \neq \mu$.

(c) [9p] Show that $\lambda \in \mathbb{R}$.

[HINT: Remember that $\langle u, u \rangle = 1$. Use this to show that $\lambda = \overline{\lambda}$.]

$$\lambda = \lambda \langle u, u \rangle = \langle u, \lambda u \rangle = \langle u, Au \rangle = \langle Au, u \rangle = \langle \lambda u, u \rangle = \overline{\lambda} \langle u, u \rangle = \overline{\lambda},$$
 it follows that $\lambda \in \mathbb{R}$.

$$(\lambda - \mu) \langle u, v \rangle = 0.$$

$$\begin{aligned} (\lambda - \mu) \langle u, v \rangle &= \lambda \langle u, v \rangle - \mu \langle u, v \rangle \\ &= \langle \lambda u, v \rangle - \langle u, \mu v \rangle \quad (\text{since } \lambda \in \mathbb{R}) \\ &= \langle Au, v \rangle - \langle u, Av \rangle \\ &= 0 \end{aligned}$$

because A is symmetrical.

(e) [2p] Show that u is orthogonal to v.

Since $\lambda \neq \mu$, it follows from (d) that $\langle u, v \rangle = 0$. Therefore u is orthogonal to v.

Soru 5 (Adjoints of Operators). Let X be a Hilbert space and let $\mathcal{B}(X) = \{A : X \to X : A \text{ is linear and bounded}\}.$

(a) [5p] Let $A \in \mathcal{B}(X)$ be an operator. Give the definition of the *adjoint*, A^* , of A.

The *adjoint* of A is the unique operator $A^* \in \mathcal{B}(X)$ such that $\langle A^*f,g \rangle = \langle f,Ag \rangle$ for all $f,g \in X$.

(b) [5p] Let $A \in \mathcal{B}(X)$. Show that $A^{**} = A$.

Since

$$\langle f, Ag \rangle = \langle A^*f, g \rangle = \overline{\langle g, A^*f \rangle} = \overline{\langle A^{**}g, f \rangle} = \langle f, A^{**}g \rangle$$
for all $f, g \in X$, it follows that $A = A^{**}$.

Let $u, v \in X$. Let $A: X \to X$ be an operator defined by

$$Af = \langle u, f \rangle v$$

(c) [5p] Show that A is bounded.

 $\|Af\| = \|\langle u, f\rangle v\| = |\langle u, f\rangle| \|v\| \le \|u\| \|f\| \|v\|$ by Cauchy-Schwarz. Therefore $\|A\| \le \|u\| \|v\|.$

(d) [5p] Calculate ||A||.

By Cauchy-Schwarz, ||Af|| = ||u|| ||f|| ||v|| iff f is parallel to u. Therefore ||A|| = ||u|| ||v||.

(e) [5p] Calculate the adjoint of A.

Since $\langle A^*g, f \rangle = \langle g, Af \rangle = \langle g, \langle u, f \rangle v \rangle = \langle u, f \rangle \langle g, v \rangle = \overline{\langle v, g \rangle} \langle u, f \rangle = \langle \langle v, g \rangle u, f \rangle$, it follows that $A^*g = \langle v, g \rangle u$.