

2013.11.12 MAT 461 – Fonksiyonel Analiz I – Ara Sınavın Çözümleri N. Course

Soru 1 (Banach Spaces). Let X be a vector space

(a) [10p] Give the definition of a *norm* on X.

A norm is a function $\|\cdot\| : X \to \mathbb{R}$ 2 which satisfies

- (i) ||f|| > 0 for all $f \in X, f \neq 0;$ 3
- (ii) $\|\alpha f\| = |\alpha| \|f\|$ for all $f \in X$, $\alpha \in \mathbb{C}$ (or $\alpha \in \mathbb{R}$ if X is a real vector space); 3
- (iii) $||f + g|| \le ||f|| + ||g||$ for all $f, g \in X$. 2

ļ

Consider the set

$$\mathbb{P}^{\infty}(\mathbb{N}) := \{ a = (a_j)_{j=1}^{\infty} \subseteq \mathbb{C} : \|a\|_{\infty} < \infty \}$$

where

$$a\big\|_{\infty} := \sup_{j \in \mathbb{N}} |a_j| \,.$$

(b) [10p] Show that $\ell^{\infty}(\mathbb{N})$ is a vector space.

If $a = (a_j)_{j=1}^{\infty}$ and $b = (b_j)_{j=1}^{\infty}$ are sequences in $\ell^{\infty}(\mathbb{N})$ and if $\lambda \in \mathbb{C}$, then $||a + \lambda b||_{\infty} = \sup_j |a_j + \lambda b_j| \le \sup_j |a_j| + |\lambda| \sup_j |b_j| = ||a||_{\infty} + |\lambda| ||b||_{\infty} < \infty$, so $a + \lambda b \in \ell^{\infty}(\mathbb{N})$.

(c) [10p] Show that $\|\cdot\|_{\infty}$ is a norm on $\ell^{\infty}(\mathbb{N})$.

Clearly $||a||_{\infty} > 0$ for all $a \in \ell^{\infty}(\mathbb{N}), a \neq 0$ (i.e. not all $a_n = 0$). 5 Positive homogeneity and the triangle inequality were shown in part (a). 5

(d) [5p] Give the definition of a *Banach space*.

A Banach space is a complete 2 normed 2 vector space. 1

(e) [15p] Show that $(\ell^{\infty}(\mathbb{N}), \|\cdot\|_{\infty})$ is a Banach space.

We must show that $\ell^{\infty}(\mathbb{N})$ is complete: Let $a^n = (a_j^n)_{j=1}^{\infty}$ be a Cauchy sequence in $\ell^{\infty}(\mathbb{N})$ (i.e. a sequence of sequences). Let $\varepsilon > 0$. Then there exists $N \in \mathbb{N}$ such that $m, n > N \implies ||a^m - a^n||_{\infty} < \varepsilon \implies |a_j^m - a_j^n| < \varepsilon$ for all j. For each j, $(a_j^n)_{n=1}^{\infty}$ is a Cauchy sequence in \mathbb{C} . Since \mathbb{C} is complete, there exists a limit $a_j = \lim_{n \to \infty} a_j^n$. We must prove that $a = (a_j)$ is in $\ell^{\infty}(\mathbb{N})$.

Since $|a_j^m - a_j^n| < \varepsilon$ for all m, n > N and all j, we must also have that $|a - a_j^n| \le \varepsilon$ for all n > N and all j. It follows that $||a - a^n||_{\infty} = \sup_j |a_j - a_j^n| \le \varepsilon$ for all n > N and so $||a||_{\infty} \le ||a - a^n||_{\infty} + ||a^n||_{\infty} < \infty$. Therefore $a \in \ell^{\infty}(\mathbb{N})$ and so $\ell^{\infty}(\mathbb{N})$ is complete.

Soru 2 (Separable Spaces).

(a) [10p] Give the definition of *separable*.

A normed space X is called *separable* iff it contains a countable dense subset.

Consider the Banach space

$$\ell^{\infty}(\mathbb{N}) := \{ a = (a_j)_{j=1}^{\infty} \subseteq \mathbb{C} : \|a\|_{\infty} < \infty \}, \qquad \|a\|_{\infty} := \sup_{j \in \mathbb{N}} |a_j|.$$

Define

$$S := \{a = (a_j)_{j=1}^\infty \subseteq \mathbb{C} : a_j \in \{0,1\} \ \forall j\} \subseteq \ell^\infty(\mathbb{N}).$$

For example, the sequence (1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, ...) is in S.

(b) [10p] Let $a, b \in S$, $a \neq b$. Calculate $||a - b||_{\infty}$.

Since $a, b \in S$ we know that $|a_j - b_j| = 0$ or 1 for all j. If $a \neq b$, then $\exists k$ such that $a_k \neq b_k$. Therefore $|a_k - b_k| = 1$ and so $||a - b||_{\infty} = 1$.

(c) [10p] Show that S is not countable.

Suppose that S is countable. Then we can label every element of S as $a^1, a^2, a^3, a^4, \ldots$

Now define a new sequence b as follows: if $a_j^j = 1$ then define $b_j = 0$, otherwise define $b_j = 1$. Then for every $n, b \neq a^n$ (because $b_n \neq a_n^n$) so b is not in our list $a^1, a^2.a^3, a^4, \ldots$ However, every term in the sequence of b is either 1 or 0, so b must be in S. Contradiction.

Therefore S is uncountable.

(d) [20p] Show that $(\ell^{\infty}(\mathbb{N}), \|\cdot\|_{\infty})$ is <u>not</u> separable.

Finally suppose that $P = \{p^1, p^2, p^3, \ldots\}$ is a countable, dense subset of $\ell^{\infty}(\mathbb{N})$ and let $0 < \varepsilon < \frac{1}{10}$. Then for every $a \in S$ there must exists some $p \in P$ such that $||a - p||_{\infty} < \varepsilon$. But since $a, b \in S$, $a \neq b \implies ||a - b||_{\infty} = 1$, each $p \in P$ can only be close to at most one element in S. But S is uncountable so P must be uncountable as well. Contradiction.

Therefore $\ell^{\infty}(\mathbb{N})$ is not separable.

Soru 3 (Inner Products). Let X be a vector space.

(a) [10p] Give the definition of an *inner product*.

An inner product is a function $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{C}$ 2 such that (i) $\langle \alpha f + \beta g, h \rangle = \overline{\alpha} \langle f, h \rangle + \overline{\beta} \langle g, h \rangle$ for all $f, g, h \in X$ and for all $\alpha, \beta \in \mathbb{C}$; 2 (ii) $\langle f, \alpha g + \beta h \rangle = \alpha \langle f, g \rangle + \beta \langle f, h \rangle$ for all $f, g, h \in X$ and for all $\alpha, \beta \in \mathbb{C}$; 2 (iii) $\langle f, f \rangle > 0$ for all $f \in X, f \neq 0$; 2 and (iv) $\langle f, g \rangle = \overline{\langle g, f \rangle}$ for all $f, g \in X$. 2

Let $(X, \langle \cdot, \cdot \rangle)$ be an inner product space and let $||f|| := \sqrt{\langle f, f \rangle}$ for all $f \in X$.

(b) [10p] Suppose that $u, v \in X$ are orthogonal $(u \perp v)$. Show that

$$||u+v||^{2} = ||u||^{2} + ||v||^{2}.$$

Since u and v are orthogonal, we know that $\langle u, v \rangle = 0$. Thus we have that $\langle v, u \rangle = \overline{\langle u, v \rangle} = \overline{0} = 0$ also 5. Therefore

$$\|u+v\|^{2} = \langle u+v, u+v \rangle$$
$$= \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle$$
$$= \langle u, u \rangle + 0 + 0 + \langle v, v \rangle$$
$$= \|u\|^{2} + \|v\|^{2} \cdot 5$$

(c) [10p] Show that

$$||f + g||^2 - (||f|| + ||g||)^2 = 2 \operatorname{Re} \langle f, g \rangle - 2 ||f|| ||g||$$

for all $f, g \in X$.

$$\begin{split} \left\|f+g\right\|^{2} - \left(\left\|f\right\| + \left\|g\right\|\right)^{2} &= \left(\left\|f\right\|^{2} + \langle f, g \rangle + \langle g, f \rangle + \left\|g\right\|^{2}\right) - \left(\left\|f\right\|^{2} + 2\left\|f\right\| \left\|g\right\| + \left\|g\right\|^{2}\right) \\ &= \langle f, g \rangle + \langle g, f \rangle - 2\left\|f\right\| \left\|g\right\| \\ &= \langle f, g \rangle + \overline{\langle f, g \rangle} - 2\left\|f\right\| \left\|g\right\| \\ &= 2\operatorname{Re}\left\langle f, g \rangle - 2\left\|f\right\| \left\|g\right\| \end{split}$$

(d) [20p] Let $f, g \in X$ and $g \neq 0$. Show that

$$||f + g|| = ||f|| + ||g|| \iff f = \alpha g \text{ for some } \alpha \in \mathbb{R}, \alpha \ge 0.$$

[HINT: Use the Cauchy-Schwarz Inequality.]

By part (b) we can see that ||f + g|| = ||f|| + ||g|| if and only if

$$\operatorname{Re}\langle f,g\rangle = \|f\| \, \|g\| \, .$$

But

$$\operatorname{Re}\langle f,g\rangle \leq |\langle f,g\rangle| \leq ||f|| \, ||g|$$

by the Cauchy-Schwarz Inequality. The second " \leq " is an "=" if and only if $f = \alpha g$ for some $\alpha \in \mathbb{C}$ (by the Cauchy-Schwarz Inequality). Since $\langle \alpha g, g \rangle = \bar{\alpha} ||g||^2$, the first " \leq " is an "=" if and only if $\alpha \in \mathbb{R}$ and $\alpha \geq 0$.