

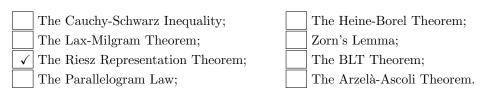
2015.01.08 MAT461 Fonksiyonel Analiz I – Final Sınavın Çözümleri N. Course

Soru 1 (Operators defined via forms). Let X be a Hilbert space.

(a) [4p] Give the definition of a sesquilinear form on X.

A sesquilinear form is a function $s: X \times X \to \mathbb{C}$ such that (a) $s(\alpha f + \beta g, h) = \bar{\alpha}s(f, h) + \bar{\beta}s(g, h)$; and (b) $s(f, \alpha g + \beta h) = \alpha s(f, g) + \beta s(f, h)$ for all $f, g \in X$ and for all $\alpha, \beta \in \mathbb{C}$.

(b) [1p] Which important theorem/lemma from this course says the following: "Let X be a Hilbert space and let $l \in X^*$. Then \exists a unique vector $h \in X$ such that $l(f) = \langle h, f \rangle$ for all $f \in X$."?



(c) [4p] Let $f \in X$. Calculate

$$\sup_{\substack{\|g\|=1\\g\in X}} \left| \langle g, f \rangle \right|.$$

Cauchy-Schwarz states that $|\langle g, f \rangle| \leq ||g|| ||f||$ with "=" iff f is parallel to g. Therefore $\sup_{||g||=1} |\langle g, f \rangle| = \sup_{||g||=1} ||g|| ||f|| = ||f||$.

Now let $s: X \times X \to \mathbb{C}$ be a bounded sesquilinear form. For each $g \in X$, we can define a map $l_g: X \to \mathbb{C}$ by $l_g(f) := \overline{s(f,g)}$. Since s is sesquilinear, it is easy to see that l_g is linear.

(d) [5p] Show that

$$l_{g+\lambda v}(f) = l_g(f) + \overline{\lambda} l_v(f)$$

for all $f, g, v \in X$ and all $\lambda \in \mathbb{C}$.

We have that

 $l_{q+\lambda y}(f) = \overline{s(f, g + \lambda y)} = \overline{s(f, g) + \lambda s(f, y)} = \overline{s(f, g)} + \overline{\lambda} \overline{s(f, y)} = l_q(f) + \overline{\lambda} l_y(f).$

By the result quoted in part (b); we know that, for each $g \in X$, there exists a unique vector $h_g \in X$ such that $l_g(\cdot) = \langle h_g, \cdot \rangle$. Define an operator $A: X \to X$ by $Ag = h_g$.

(e) [4p] Show that A is linear. [HINT: Use part (d).]

(This question, and the next one, are two of those things for which I said "you prove this" in class, so you have no excuse not to have thought about how to answer this question.) Since

$$\langle A(g+\lambda y), f \rangle = \langle h_{g+\lambda y}, f \rangle = l_{g+\lambda y}(f) = l_g(f) + \overline{\lambda} l_y(f)$$

= $\langle h_g, f \rangle + \overline{\lambda} \langle h_y, f \rangle = \langle h_g + \lambda h_y, f \rangle$
= $\langle Ag + \lambda Ay, f \rangle$

for all $f \in X$, we have that $A(g + \lambda y) = Ag + \lambda Ay$.

Since s is bounded, we have that $||Af||^2 = \langle Af, Af \rangle = s(Af, f) \leq C ||Af|| ||f||$, for some constant $C \geq 0$. So $||Af|| \leq C ||f||$ and hence A is bounded.

(f) [7p] Show that

$$||A|| = \sup_{\substack{\|f\| = \|g\| = 1\\ f, g \in X}} |s(f, g)|.$$

[HINT: Use your answer to part (c).]

(Again, no excuses for not getting this one.)
Clearly
$$\|Af\| = \sup_{\|g\|=1} |\langle g, Af \rangle| = \sup_{\|g\|=1} |s(g, f)| = \sup_{\|g\|=1} \|f\| \left| s\left(g, \frac{f}{\|f\|}\right) \right|.$$
Therefore $\|A\| = \sup_{\|f\|=\|g\|=1} |s(g, f)|.$

Soru 2 (The Proof of the BLT Theorem). Let X be a normed space. Let Y be a Banach space.

(a) [3p] Give the definition of the Operator Norm.

The operator norm of
$$A: \mathfrak{D}(A) \subseteq X \to Y$$
 is defined to be
$$\|A\| := \sup_{\substack{f \in \mathfrak{D}(A) \\ \|f\|_X = 1}} \|Af\|_Y.$$

(b) [2p] Give the definition of a *bounded* operator.

A is called a *bounded operator* if $||A|| < \infty$.

Now suppose that

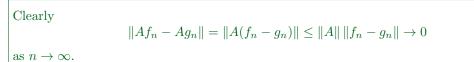
- $\mathfrak{D}(A) \subseteq X$ is a dense subset;
- $A: \mathfrak{D}(A) \to Y$ is a linear operator;
- A is bounded;
- $v \in X;$
- (c) [5p] Show that

•
$$(f_n)_{n=1}^{\infty}$$
 and $(g_n)_{n=1}^{\infty}$ are Cauchy sequences
in $\mathfrak{D}(A)$;

- $\lim_{n\to\infty} f_n = v;$
- $\lim_{n\to\infty} g_n = v.$

$$\lim_{n \to \infty} Af_n = \lim_{n \to \infty} Ag_n$$

[HINT: If $v \in \mathfrak{D}(A)$, then this is easy: $\lim_{n\to\infty} Af_n = Av = \lim_{n\to\infty} Ag_n$ because A is continuous. However, if $v \in X \setminus \mathfrak{D}(A)$, then Av is undefined.]



Now we can define a new map $\overline{A} : X \to Y$ as follows: For all $f \in X$, let $(f_n)_{n=1}^{\infty} \subseteq \mathfrak{D}(A)$ be a Cauchy sequence such that $f_n \to f$ as $n \to \infty$ (remember that $\mathfrak{D}(A)$ is dense in X, so we can always find such a Cauchy sequence). Then define

$$Af := \lim_{n \to \infty} Af_n.$$

(d) [5p] Show that if $f \in \mathfrak{D}(A)$, then $\overline{A}f = Af$.

Just choose the constant sequence $f_n := f$ for all n. Then clearly $\overline{A}f = \lim_{n \to \infty} Af_n = \lim_{n \to \infty} Af = Af$.

(e) [5p] Show that \overline{A} is linear.

This follows from the continuity of vector addition and scalar multiplication:

If $f_n \to f$, $g_n \to g$ (f_n and g_n Cauchy sequences) and $\lambda \in \mathbb{C}$, then we know that $f_n + \lambda g_n \to f + \lambda g$. Hence

$$\overline{A}(f+\lambda g) = \lim_{n \to \infty} A(f_n + \lambda g_n) = \lim_{n \to \infty} Af_n + \lambda Ag_n = \lim_{n \to \infty} Af_n + \lambda \lim_{n \to \infty} Ag_n = \overline{A}f + \lambda \overline{A}g.$$

(f) [5p] Show that $\|\overline{A}\| = \|A\|$.

This follows from the continuity of norms: Since

$$\left\|\overline{A}f\right\| = \left\|\lim_{n \to \infty} Af_n\right\| = \lim_{n \to \infty} \left\|Af_n\right\| \le \lim_{n \to \infty} \left\|A\right\| \left\|f_n\right\| = \left\|A\right\| \left\|f\right\|,$$

we have that $\|\overline{A}\| \leq \|A\|$. The " \geq " follows immediately from part (d).

Soru 3 (The Spectral Theorem for Compact Symmetrical Operators). Let X and Y be normed spaces.

(a) [5p] Give the definition of a *compact* operator $K: X \to Y$.

An operator K is called a *compact* operator iff, for all bounded sequences $(x_n) \subseteq X$ there exists a subsequence (x_{n_j}) such that $(Kx_{n_j}) \subseteq Y$ is convergent.

Now suppose that

- X is a Hilbert space;
- $A: X \to X;$
- $A \in \mathcal{K}(X);$
- (b) [4p] Show that

$$||A||^{2} = \sup_{\substack{||f||=1\\f\in X}} \langle f, A^{2}f \rangle.$$

Clearly

$$||A||^{2} = \sup_{\|f\|=1, f \in X} ||Af||^{2} = \sup_{\|f\|=1, f \in X} \langle Af, Af \rangle = \sup_{\|f\|=1, f \in X} \langle f, A^{2}f \rangle$$

because A is symmetrical.

• $||A|| \neq 0;$

• A is symmetrical;

• $\alpha := \|A\|.$

By part (b), \exists a sequence of unit vectors $\{u_n\}_{n=1}^{\infty}$ such that

$$\lim_{n \to \infty} \left\langle u_n, A^2 u_n \right\rangle = \alpha^2$$

(c) [3p] Show that \exists a subsequence $\{u_{n_j}\}_{j=1}^{\infty} \subseteq \{u_n\}_{n=1}^{\infty}$ such that $A^2 u_{n_j}$ converges as $j \to \infty$.

Since A is compact, we have that A^2 is also compact. Since u_n is a bounded sequence, this then follows straight away.

(d) [3p] Show that

$$\left\|A^2 u_{n_j}\right\| \le \alpha^2$$

for all j. Clearly

$$||A^{2}u_{n_{j}}|| \leq ||A|| ||Au_{n_{j}}|| \leq ||A|| ||A|| ||u_{n_{j}}|| = \alpha^{2}.$$

(e) [10p] Show that

$$\lim_{j \to \infty} A^2 u_{n_j} = \lim_{j \to \infty} \alpha^2 u_{n_j}.$$
[HINT: $\left\| (A^2 - \alpha^2) u_{n_j} \right\|^2 = \left\langle A^2 u_{n_j} - \alpha^2 u_{n_j}, A^2 u_{n_j} - \alpha^2 u_{n_j} \right\rangle = \left\| A^2 u_{n_j} \right\|^2 - ?+?.]$
Since
$$\left\| (A^2 - \alpha^2) u_{n_j} \right\|^2 = \left\langle A^2 u_{n_j} - \alpha^2 u_{n_j}, A^2 u_{n_j} - \alpha^2 u_{n_j} \right\rangle$$

$$= \left\| A^2 u_{n_j} \right\|^2 - 2\alpha^2 \left\langle u_{n_j}, A u_{n_j} \right\rangle + \alpha^4$$

$$\leq \alpha^4 - 2\alpha^2 \langle u_{n_j}, A^2 u_{n_j} \rangle + \alpha^4$$
$$= 2\alpha^2 (\alpha^2 - \langle u_{n_j}, A^2 u_{n_j} \rangle)$$
$$\to 0 \qquad 6$$

by part (b), we have that $\lim_{j\to\infty} A^2 u_{n_j} = \lim_{j\to\infty} \alpha^2 u_{n_j}$.

Soru 4 (Inner Products and the Parallelogram Law).

(a) [5p] Give the definition of a *total* set.

A set whose span is dense is called *total*.

Definition: An *inner product* is a function $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{C}$ such that

- (i) $\langle \alpha f + \beta g, h \rangle = \overline{\alpha} \langle f, h \rangle + \overline{\beta} \langle g, h \rangle$ for all $f, g, h \in X$ and for all $\alpha, \beta \in \mathbb{C}$;
- (ii) $\langle f, \alpha g + \beta h \rangle = \alpha \langle f, g \rangle + \beta \langle f, h \rangle$ for all $f, g, h \in X$ and for all $\alpha, \beta \in \mathbb{C}$;
- (iii) $\langle f, f \rangle > 0$ for all $f \in X, f \neq 0$; and
- (iv) $\langle f, g \rangle = \overline{\langle g, f \rangle}$ for all $f, g \in X$.
- (b) [5p] Show that condition (ii) is not necessary in the definition of an inner product. Precisely, show that

$$((i) \land (iv)) \implies (ii)$$

(An easy question – shame on you if you can't get this one.) Let $f, g, h \in X$ and $\alpha, \beta \in \mathbb{C}$. Since $\langle f, \alpha g + \beta h \rangle = \overline{\langle \alpha g + \beta h, f \rangle} = \overline{\overline{\alpha} \langle g, f \rangle + \overline{\beta} \langle h, f \rangle} = \alpha \overline{\langle g, f \rangle} + \beta \overline{\langle h, f \rangle} = \alpha \langle f, g \rangle + \beta \langle f, h \rangle$ by (i) and (iv), we can see that condition (ii) is unnecessary. Let X be an inner product space.

(c) [5p] Let $u, v \in X$. Suppose that $\langle u, x \rangle = \langle v, x \rangle$ for all $x \in X$. Show that u = v.

Rearranging, we have that $0 = \langle u - v, x \rangle$ for all $x \in X$. Since $u - v \in X$, we then have $0 = \langle u - v, u - v \rangle = ||u - v||^2$ which implies that u - v = 0.

Now let $X = \mathbb{R}^n$ and define a norm $\|\cdot\|_1 : X \to \mathbb{R}$ by

$$||x||_1 := \sum_{j=1}^n |x_j|$$

for each $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$. [You do not need to prove that $\|\cdot\|_1$ is a norm on \mathbb{R}^n .]

(d) [10p] Show that \nexists an inner product $\langle \cdot, \cdot \rangle_1$ such that

$$\|f\|_1 = \sqrt{\langle f, f \rangle_1}$$

for all $f \in \mathbb{R}^n$.

The Parallelogram Law (the name of this question was a huge clue) tells us that a norm is associated with an inner product if and only if

$$||x + y||_1^2 + ||x - y||_1^2 = 2 ||x||_1^2 + 2 ||y||_1^2$$

for all $x, y \in \mathbb{R}^k$. Notice that if $x = (1, 0, \dots, 0)$ and $y = (0, 1, 0, \dots, 0)$ then

 $||x+y||_{1}^{2} + ||x-y||_{1}^{2} = (|1|+|1|+|0|+\ldots+|0|)^{2} + (|1|+|-1|+|0|+\ldots+|0|)^{2} = 8$

but

$$2 ||x||_{1}^{2} + 2 ||y||_{1}^{2} = 2(|1| + |0| + \ldots + |0|)^{2} + 2(|0| + |1| + |0| + \ldots + |0|)^{2} = 4.$$

Therefore, there does not exist an inner product associated with $\|\cdot\|_1$.

Soru 5 (Cauchy Sequences and Closed Subspaces). Let $(X, \|\cdot\|_X)$ be a normed space.

(a) [4p] Give the definition of a Cauchy sequence in X.

Let $(f^n)_{n=1}^{\infty}$ be a sequence in X. We say that f^n is a Cauchy sequence iff for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $n, m > N \implies ||f^n - f^m||_X < \varepsilon.$

Consider the vector space

$$\ell^2(\mathbb{N}) := \left\{ a = (a_j)_{j=1}^\infty \subseteq \mathbb{C} : \sum_{j=1}^\infty |a_j|^2 < \infty \right\}$$

with the inner product

$$\langle f,g\rangle_2 := \sum_{j=1}^{\infty} \overline{f_j} g_j$$

and the norm $||f||_2 := \sqrt{\langle f, f \rangle_2}$. Define $S := \left\{ a = (a_j)_{j=1}^{\infty} \subseteq \mathbb{C} : \exists N \in \mathbb{N} \text{ such that } a_n = 0 \ \forall n > N \right\}.$ (b) [7p] Show that S is a subspace of $\ell^2(\mathbb{N})$. [HINT: The question says "sub*space*", not "sub*set*".]

> Clearly, if $b \in S$ then $\|b\|_2^2 = \sum_{j=1}^{\infty} |b_j|^2 = \sum_{j=1}^{N} |b_j|^2 < \infty$ for some $N \in \mathbb{N}$. So $S \subseteq \ell^2(\mathbb{N})$. Now suppose that $a, b \in S$ and $\lambda \in \mathbb{C}$. Let $N_a, N_b \in \mathbb{N}$ be natural numbers such that $a_n = 0$ for all $n > N_a$, and $b_n = 0$ for all $n > N_b$. Define $N := \max\{N_a, N_b\}$. Then $(a + \lambda b)_n = a_n + \lambda b_n = 0$ for all n > N and hence $a + \lambda b \in S$. Therefore S is a vector space.

Now define a sequence $\{f^n\}_{n=1}^{\infty} \subseteq S$ by

$$f_j^n := \begin{cases} 2^{\frac{1-j}{2}} & j \le n \\ 0 & j > n. \end{cases}$$

For example,

$$f^5 = \left(1, \frac{1}{\sqrt{2}}, \frac{1}{2}, \frac{1}{2^{\frac{3}{2}}}, \frac{1}{4}, 0, 0, 0, 0, 0, \dots\right).$$

(c) [7p] Show that $\{f^n\}_{n=1}^{\infty}$ is a Cauchy sequence in $\ell^2(\mathbb{N})$.

Suppose that n > m > N. Then

$$\begin{split} \|f^n - f^m\|_2^2 &= \sum_{j=1}^{\infty} \left|f_j^n - f_j^m\right|^2 \\ &= \sum_{j=1}^m \left|f_j^n - f_j^m\right|^2 + \sum_{j=m+1}^n \left|f_j^n - f_j^m\right|^2 + \sum_{j=n+1}^\infty \left|f_j^n - f_j^m\right|^2 \\ &= 0 + \sum_{j=m+1}^n \left|f_j^n\right|^2 + 0 \\ &= \sum_{j=m+1}^n 2^{1-j} = 2^{-m} \sum_{j=1}^{n-m} 2^{1-j} \\ &\leq 2^{-m} \sum_{j=1}^\infty 2^{1-j} = 2^{1-m} \leq 2^{-N} \to 0 \end{split}$$
as $N \to \infty$. Hence $\{f^n\}_{n=1}^\infty$ is a Cauchy sequence in $\ell^2(\mathbb{N})$.

(d) [7p] Show that S is not closed.

Define
$$f = (f_j)_{j=1}^{\infty}$$
 by
 $f_j := 2^{\frac{1-j}{2}}$.
Then $||f||_2^2 = \sum_{j=1}^{\infty} 2^{1-j} = 2 < \infty$ as above. So $f \in \ell^2(\mathbb{N})$.
It is clear that $f^n \in S$ for each n , but $f \notin S$. We also have that
 $||f^n - f||_2^2 = \sum_{j=n+1}^{\infty} 2^{1-j} = 2^{1-n} \to 0$
as $n \to \infty$. So $\lim_{n \to \infty} f^n = f$. Therefore S is not closed.

6