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Soru 1 (Operators defined via forms). Let X be a Hilbert space.

(a) [4p] Give the definition of a sesquilinear form on X.

A sesquilinear form is a function s : X ×X → C such that

(a) s(αf + βg, h) = ᾱs(f, h) + β̄s(g, h); and

(b) s(f, αg + βh) = αs(f, g) + βs(f, h)

for all f, g ∈ X and for all α, β ∈ C.

(b) [1p] Which important theorem/lemma from this course says the following: “Let X be a Hilbert
space and let l ∈ X∗. Then ∃ a unique vector h ∈ X such that l(f) = 〈h, f〉 for all f ∈ X.”?

The Cauchy-Schwarz Inequality;

The Lax-Milgram Theorem;

X The Riesz Representation Theorem;

The Parallelogram Law;

The Heine-Borel Theorem;

Zorn’s Lemma;

The BLT Theorem;

The Arzelà-Ascoli Theorem.

(c) [4p] Let f ∈ X. Calculate

sup
‖g‖=1
g∈X

|〈g, f〉| .

Cauchy-Schwarz states that |〈g, f〉| ≤ ‖g‖ ‖f‖ with “=” iff f is parallel to g. Therefore
sup‖g‖=1 |〈g, f〉| = sup‖g‖=1 ‖g‖ ‖f‖ = ‖f‖.

Now let s : X × X → C be a bounded sesquilinear form. For each g ∈ X, we can define a map
lg : X → C by lg(f) := s(f, g). Since s is sesquilinear, it is easy to see that lg is linear.

(d) [5p] Show that

lg+λv(f) = lg(f) + λlv(f)

for all f, g, v ∈ X and all λ ∈ C.

We have that

lg+λy(f) = s(f, g + λy) = s(f, g) + λs(f, y) = s(f, g) + λs(f, y) = lg(f) + λly(f).

By the result quoted in part (b); we know that, for each g ∈ X, there exists a unique vector hg ∈ X
such that lg(·) = 〈hg, ·〉 . Define an operator A : X → X by Ag = hg.

(e) [4p] Show that A is linear. [HINT: Use part (d).]
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(This question, and the the next one, are two of those things for which I said “you prove this” in class, so

you have no excuse not to have thought about how to answer this question.)

Since
〈A(g + λy), f〉 = 〈hg+λy, f〉 = lg+λy(f) = lg(f) + λly(f)

= 〈hg, f〉+ λ 〈hy, f〉 = 〈hg + λhy, f〉
= 〈Ag + λAy, f〉

for all f ∈ X, we have that A(g + λy) = Ag + λAy.

Since s is bounded, we have that ‖Af‖2 = 〈Af,Af〉 = s(Af, f) ≤ C ‖Af‖ ‖f‖, for some constant
C ≥ 0. So ‖Af‖ ≤ C ‖f‖ and hence A is bounded.

(f) [7p] Show that
‖A‖ = sup

‖f‖=‖g‖=1
f,g∈X

|s(f, g)| .

[HINT: Use your answer to part (c).]

(Again, no excuses for not getting this one.)

Clearly

‖Af‖ = sup
‖g‖=1

|〈g,Af〉| = sup
‖g‖=1

|s(g, f)| = sup
‖g‖=1

‖f‖
∣∣∣∣s(g, f

‖f‖

)∣∣∣∣ .
Therefore ‖A‖ = sup‖f‖=‖g‖=1 |s (g, f)|.

Soru 2 (The Proof of the BLT Theorem). Let X be a normed space. Let Y be a Banach space.

(a) [3p] Give the definition of the Operator Norm.

The operator norm of A : D(A) ⊆ X → Y is defined to be

‖A‖ := sup
f∈D(A)
‖f‖X=1

‖Af‖Y .

(b) [2p] Give the definition of a bounded operator.

A is called a bounded operator if ‖A‖ <∞.

Now suppose that

• D(A) ⊆ X is a dense subset;

• A : D(A)→ Y is a linear operator;

• A is bounded;

• v ∈ X;

• (fn)∞n=1 and (gn)∞n=1 are Cauchy sequences
in D(A);

• limn→∞ fn = v;

• limn→∞ gn = v.

(c) [5p] Show that
lim
n→∞

Afn = lim
n→∞

Agn.

[HINT: If v ∈ D(A), then this is easy: limn→∞ Afn = Av = limn→∞ Agn because A is continuous. However, if

v ∈ X \D(A), then Av is undefined.]

Clearly
‖Afn −Agn‖ = ‖A(fn − gn)‖ ≤ ‖A‖ ‖fn − gn‖ → 0

as n→∞.
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Now we can define a new map A : X → Y as follows: For all f ∈ X, let (fn)∞n=1 ⊆ D(A) be a
Cauchy sequence such that fn → f as n → ∞ (remember that D(A) is dense in X, so we can always find

such a Cauchy sequence). Then define
Af := lim

n→∞
Afn.

(d) [5p] Show that if f ∈ D(A), then Af = Af .

Just choose the constant sequence fn := f for all n. Then clearly Af = limn→∞Afn =
limn→∞Af = Af .

(e) [5p] Show that A is linear.

This follows from the continuity of vector addition and scalar multiplication:

If fn → f , gn → g (fn and gn Cauchy sequences) and λ ∈ C, then we know that fn+λgn →
f + λg. Hence

A(f + λg) = lim
n→∞

A(fn + λgn) = lim
n→∞

Afn + λAgn = lim
n→∞

Afn + λ lim
n→∞

Agn = Af + λAg.

(f) [5p] Show that
∥∥A∥∥ = ‖A‖.

This follows from the continuity of norms: Since∥∥Af∥∥ =
∥∥∥ lim
n→∞

Afn

∥∥∥ = lim
n→∞

‖Afn‖ ≤ lim
n→∞

‖A‖ ‖fn‖ = ‖A‖ ‖f‖ ,

we have that
∥∥A∥∥ ≤ ‖A‖.

The “≥” follows immediately from part (d).

Soru 3 (The Spectral Theorem for Compact Symmetrical Operators). Let X and Y be normed
spaces.

(a) [5p] Give the definition of a compact operator K : X → Y .

An operator K is called a compact operator iff, for all bounded sequences (xn) ⊆ X there
exists a subsequence (xnj ) such that (Kxnj ) ⊆ Y is convergent.

Now suppose that

• X is a Hilbert space;

• A : X → X;

• A ∈ K(X);

• A is symmetrical;

• ‖A‖ 6= 0;

• α := ‖A‖.

(b) [4p] Show that

‖A‖2 = sup
‖f‖=1
f∈X

〈
f,A2f

〉
.

Clearly

‖A‖2 = sup
‖f‖=1,f∈X

‖Af‖2 = sup
‖f‖=1,f∈X

〈Af,Af〉 = sup
‖f‖=1,f∈X

〈
f,A2f

〉
because A is symmetrical.
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By part (b), ∃ a sequence of unit vectors {un}∞n=1 such that

lim
n→∞

〈
un, A

2un
〉

= α2.

(c) [3p] Show that ∃ a subsequence {unj
}∞j=1 ⊆ {un}∞n=1 such that A2unj

converges as j →∞.

Since A is compact, we have that A2 is also compact. Since un is a bounded sequence, this
then follows straight away.

(d) [3p] Show that ∥∥A2unj

∥∥ ≤ α2

for all j.

Clearly ∥∥A2unj

∥∥ ≤ ‖A‖∥∥Aunj

∥∥ ≤ ‖A‖ ‖A‖ ∥∥unj

∥∥ = α2.

(e) [10p] Show that
lim
j→∞

A2unj = lim
j→∞

α2unj .

[HINT:
∥∥∥(A2 − α2)unj

∥∥∥2 =
〈
A2unj

− α2unj
, A2unj

− α2unj

〉
=
∥∥∥A2unj

∥∥∥2−?+?.]

Since ∥∥(A2 − α2)unj

∥∥2
=
〈
A2unj − α2unj , A

2unj − α2unj

〉
=
∥∥A2unj

∥∥2 − 2α2
〈
unj , Aunj

〉
+ α4

≤ α4 − 2α2
〈
unj

, A2unj

〉
+ α4

= 2α2
(
α2 −

〈
unj

, A2unj

〉 )
→ 0 6

by part (b), we have that limj→∞A2unj = limj→∞ α2unj .

Soru 4 (Inner Products and the Parallelogram Law).

(a) [5p] Give the definition of a total set.

A set whose span is dense is called total.

Definition: An inner product is a function 〈·, ·〉 : X ×X → C such that

(i) 〈αf + βg, h〉 = α 〈f, h〉+ β 〈g, h〉 for all f, g, h ∈ X and for all α, β ∈ C;

(ii) 〈f, αg + βh〉 = α 〈f, g〉+ β 〈f, h〉 for all f, g, h ∈ X and for all α, β ∈ C;

(iii) 〈f, f〉 > 0 for all f ∈ X, f 6= 0; and

(iv) 〈f, g〉 = 〈g, f〉 for all f, g ∈ X.

(b) [5p] Show that condition (ii) is not necessary in the definition of an inner product. Precisely,
show that (

(i) ∧ (iv)
)

=⇒ (ii).

(An easy question – shame on you if you can’t get this one.)

Let f, g, h ∈ X and α, β ∈ C. Since

〈f, αg + βh〉 = 〈αg + βh, f〉 = α 〈g, f〉+ β 〈h, f〉 = α〈g, f〉+ β〈h, f〉 = α 〈f, g〉+ β 〈f, h〉

by (i) and (iv), we can see that condition (ii) is unnecessary.
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Let X be an inner product space.

(c) [5p] Let u, v ∈ X. Suppose that 〈u, x〉 = 〈v, x〉 for all x ∈ X. Show that u = v.

Rearranging, we have that 0 = 〈u− v, x〉 for all x ∈ X. Since u− v ∈ X, we then have

0 = 〈u− v, u− v〉 = ‖u− v‖2

which implies that u− v = 0.

Now let X = Rn and define a norm ‖·‖1 : X → R by

‖x‖1 :=

n∑
j=1

|xj |

for each x = (x1, . . . , xn) ∈ Rn. [You do not need to prove that ‖·‖1 is a norm on Rn.]

(d) [10p] Show that @ an inner product 〈·, ·〉1 such that

‖f‖1 =
√
〈f, f〉1

for all f ∈ Rn.

The Parallelogram Law (the name of this question was a huge clue) tells us that a norm is associated
with an inner product if and only if

‖x+ y‖21 + ‖x− y‖21 = 2 ‖x‖21 + 2 ‖y‖21

for all x, y ∈ Rk.
Notice that if x = (1, 0, . . . , 0) and y = (0, 1, 0, . . . , 0) then

‖x+ y‖21 + ‖x− y‖21 =
(
|1|+ |1|+ |0|+ . . .+ |0|

)2
+
(
|1|+ |−1|+ |0|+ . . .+ |0|

)2
= 8

but

2 ‖x‖21 + 2 ‖y‖21 = 2
(
|1|+ |0|+ . . .+ |0|

)2
+ 2
(
|0|+ |1|+ |0|+ . . .+ |0|

)2
= 4.

Therefore, there does not exist an inner product associated with ‖·‖1.

Soru 5 (Cauchy Sequences and Closed Subspaces). Let (X, ‖·‖X) be a normed space.

(a) [4p] Give the definition of a Cauchy sequence in X.

Let (fn)∞n=1 be a sequence in X. We say that fn is a Cauchy sequence iff for all ε > 0 there
exists N ∈ N such that

n,m > N =⇒ ‖fn − fm‖X < ε.

Consider the vector space

`2(N) :=
{
a = (aj)

∞
j=1 ⊆ C :

∞∑
j=1

|aj |2 <∞
}

with the inner product

〈f, g〉2 :=

∞∑
j=1

fjgj

and the norm ‖f‖2 :=
√
〈f, f〉2. Define

S :=
{
a = (aj)

∞
j=1 ⊆ C : ∃N ∈ N such that an = 0 ∀n > N

}
.
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(b) [7p] Show that S is a subspace of `2(N).
[HINT: The question says “subspace”, not “subset”.]

Clearly, if b ∈ S then

‖b‖22 =

∞∑
j=1

|bj |2 =

N∑
j=1

|bj |2 <∞

for some N ∈ N. So S ⊆ `2(N).

Now suppose that a, b ∈ S and λ ∈ C. Let Na, Nb ∈ N be natural numbers such that
an = 0 for all n > Na, and bn = 0 for all n > Nb. Define N := max{Na, Nb}. Then
(a+λb)n = an +λbn = 0 for all n > N and hence a+λb ∈ S. Therefore S is a vector space.

Now define a sequence {fn}∞n=1 ⊆ S by

fnj :=

{
2

1−j
2 j ≤ n

0 j > n.

For example,

f5 =
(
1,

1√
2
,

1

2
,

1

2
3
2

,
1

4
, 0, 0, 0, 0, 0, . . .

)
.

(c) [7p] Show that {fn}∞n=1 is a Cauchy sequence in `2(N).

Suppose that n > m > N . Then

‖fn − fm‖22 =

∞∑
j=1

∣∣fnj − fmj ∣∣2
=

m∑
j=1

∣∣fnj − fmj ∣∣2 +

n∑
j=m+1

∣∣fnj − fmj ∣∣2 +

∞∑
j=n+1

∣∣fnj − fmj ∣∣2
= 0 +

n∑
j=m+1

∣∣fnj ∣∣2 + 0

=

n∑
j=m+1

21−j = 2−m
n−m∑
j=1

21−j

≤ 2−m
∞∑
j=1

21−j = 21−m ≤ 2−N → 0

as N →∞. Hence {fn}∞n=1 is a Cauchy sequence in `2(N).

(d) [7p] Show that S is not closed.

Define f = (fj)
∞
j=1 by

fj := 2
1−j
2 .

Then ‖f‖22 =
∑∞
j=1 21−j = 2 <∞ as above. So f ∈ `2(N).

It is clear that fn ∈ S for each n, but f 6∈ S. We also have that

‖fn − f‖22 =

∞∑
j=n+1

21−j = 21−n → 0

as n→∞. So limn→∞ fn = f . Therefore S is not closed.
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