

2014.11.19 MAT461 Fonksiyonel Analiz I – Ara Sınavın Çözümleri N. Course

Soru 1 (Inner Products). Let X be a vector space.

(a) [10p] Give the definition of an *inner product*.

An inner product is a function $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{C}$ such that (i) $\langle \alpha f + \beta g, h \rangle = \overline{\alpha} \langle f, h \rangle + \overline{\beta} \langle g, h \rangle$ for all $f, g, h \in X$ and for all $\alpha, \beta \in \mathbb{C}$; (ii) $\langle f, \alpha g + \beta h \rangle = \alpha \langle f, g \rangle + \beta \langle f, h \rangle$ for all $f, g, h \in X$ and for all $\alpha, \beta \in \mathbb{C}$; (iii) $\langle f, f \rangle > 0$ for all $f \in X, f \neq 0$; and (iv) $\langle f, g \rangle = \overline{\langle g, f \rangle}$ for all $f, g \in X$.

Now let $(X, \langle \cdot, \cdot \rangle)$ be an inner product space and define $\|\cdot\| := \sqrt{\langle \cdot, \cdot \rangle}$ as usual. Let $u \in X$ be a unit vector. Let $f \in X$. Define $f_{\parallel} := \langle u, f \rangle u$ and $f_{\perp} := f - f_{\parallel}$.

(b) [10p] Show that u and f_{\perp} are orthogonal.

Since $\langle u, f_{\perp} \rangle = \langle u, f - \langle u, f \rangle u \rangle = \langle u, f \rangle - \langle u, f \rangle \langle u, u \rangle = \langle u, f \rangle - \langle u, f \rangle = 0$ we have that u and f_{\perp} are orthogonal.

Let $\alpha \in \mathbb{C}$. Define $h := \alpha u$.

(c) [10p] Show that $||f - h|| \ge ||f_{\perp}||$.

By Pythagoras, we have that

$$\|f - h\|^2 = \|f - \alpha u\|^2 = \|f_{\perp} + f_{\parallel} - \alpha u\|^2 = \|f_{\perp}\|^2 + \|f_{\parallel} - \alpha u\|^2 \ge \|f_{\perp}\|^2.$$

Therefore $\|f - h\| \ge \|f_{\perp}\|.$

Define $U := \{ v \in X : v \text{ is parallel to } u \} \subseteq X.$

- (d) [10p] Show that $||f f_{\parallel}|| = \inf_{v \in U} ||f v||$. Clearly $f_{\parallel} \in U$. Therefore $||f - f_{\parallel}|| \ge \inf_{v \in U} ||f - v||$. The " \le " follows immediately from part (c), and we are done.
- (e) [10p] Show that if $w \in U$ and $w \neq f_{\parallel}$, then

$$||f - w|| > \inf_{v \in U} ||f - v||.$$

We have $||f - w||^2 = ||f_{\perp}||^2 + ||f_{\parallel} - w||^2 > ||f_{\perp}||^2 = ||f - f_{\parallel}||^2 = \inf_{v \in U} ||f - v||^2$ since $w \neq f_{\parallel}$. Soru 2 (Norms). Let X be a vector space.

(a) [10p] Give the definition of a norm on X.

A norm is a function $\|\cdot\| : X \to \mathbb{R}$ which satisfies (i) $\|f\| > 0$ for all $f \in X$, $f \neq 0$; (ii) $\|\alpha f\| = |\alpha| \|f\|$ for all $f \in X$, $\alpha \in \mathbb{C}$ (or $\alpha \in \mathbb{R}$ if X is a real vector space); (iii) $\|f + g\| \le \|f\| + \|g\|$ for all $f, g \in X$.

(b) [15p] Show that every norm is continuous.

Let $x_n \in X$ and $x_n \to x \in X$ as $n \to \infty$. On your homework, you proved that $|||f|| - ||g||| \le ||f - g||$. Therefore $|||x_n|| - ||x||| \le ||x_n - x|| \to 0$ as $n \to \infty$. So $\lim_{n\to\infty} ||x_n|| = ||x||$. Hence $||\cdot||$ is continuous.

(c) [25p] Now suppose that Y is a finite dimensional complex vector space. Let $\{e_1, e_2, \ldots, e_n\}$ be a basis for X. Then any vector $y \in Y$ can be written as $y = \sum_{j=1}^n \lambda_j e_j$ for unique $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{C}$. Define a function $\|\cdot\|_Y : Y \to \mathbb{R}$ by $\|y\|_Y := \left(\sum_{j=1}^n |\lambda_j|^2\right)^{\frac{1}{2}}$. Show that $\|\cdot\|_Y$ is a norm on Y.

[HINT: You may use the inequality $\sum_{j=1}^k |\alpha_j| |\beta_j| \le \left(\sum_{j=1}^k |\alpha_j|^2\right)^{\frac{1}{2}} \left(\sum_{j=1}^k |\beta_j|^2\right)^{\frac{1}{2}}$.]

- Let $x = \sum \mu_j e_j \in Y$, $y = \sum \lambda_j e_j \in Y$ and $\alpha \in \mathbb{C}$. Then
- (a) 6 If $x \neq 0$, then $\exists k$ such that $\mu_k \neq 0$ and so

$$||x||_Y^2 = \sum_j |\mu_j|^2 \ge |\mu_k|^2 > 0.$$

(b) 6 Clearly

$$\|\alpha x\|_{Y}^{2} = \sum_{j=1}^{n} |\alpha \mu_{j}|^{2} = |\alpha|^{2} \sum_{j} |\mu_{j}|^{2} = |\alpha|^{2} \|x\|_{Y}^{2}.$$

(c) 13 Finally

$$\begin{aligned} \|x+y\|_{Y}^{2} &= \sum_{j} |\mu_{j} + \lambda_{j}|^{2} \\ &= \sum_{j} |\mu_{j}|^{2} + \sum_{j} \overline{\mu_{j}} \lambda_{j} + \sum_{j} \mu_{j} \overline{\lambda_{j}} + \sum_{j} |\lambda_{j}|^{2} \\ &= \|x\|_{Y}^{2} + 2 \sum_{j} \operatorname{Re}(\mu_{j}\lambda_{j}) + \|y\|_{Y}^{2} \\ &\leq \|x\|_{Y}^{2} + 2 \sum_{j} |\mu_{j}| |\lambda_{j}| + \|y\|_{Y}^{2} \\ &\leq \|x\|_{Y}^{2} + 2 \left(\sum_{j} |\mu_{j}|^{2}\right)^{\frac{1}{2}} \left(\sum_{j} |\lambda_{j}|^{2}\right)^{\frac{1}{2}} + \|y\|_{Y}^{2} \\ &= \|x\|_{Y}^{2} + 2 \|x\|_{Y} \|y\|_{Y} + \|y\|_{Y}^{2} \\ &= (\|x\|_{Y}^{2} + \|y\|_{Y})^{2}. \end{aligned}$$

Therefore $\|\cdot\|_{Y}$ is a norm.

Soru 3 (Banach spaces).

(a) [5p] Give the definition of a *Banach space*.

A complete normed space is called a Banach space

Let $I = [a, b] \subseteq \mathbb{R}$ and let

 $C^{1}(I) := \{ f : I \to \mathbb{C} : f \text{ is differentiable and } f' \text{ is continuous} \}.$

(b) [5p] Show that $C^1(I)$ is a vector space.

Let $f,g \in C^1(I)$ and $\lambda \in \mathbb{C}$. Then $f + \lambda g$ is differentiable and $(f + \lambda g)' = f' + \lambda g'$ is continuous. Therefore $f + \lambda g \in C^1(I)$, and so $C^1(I)$ is a vector space.

Let

$$||f||_{\infty,1} := \max_{x \in I} |f(x)| + \max_{x \in I} |f'(x)|$$

- (c) [15p] Show that $\|\cdot\|_{\infty,1}$ is a norm on $C^1(I)$.
 - (a) If $f \neq 0$, then $\exists x$ such that $f(x) \neq 0$ and so $||f||_{\infty,1} > 0$.
 - (b) $\|\alpha f\|_{\infty,1} = \|\alpha f\|_{\infty} + \|\alpha f'\|_{\infty} = |\alpha| \|f\|_{\infty} + |\alpha| \|f'\|_{\infty} = |\alpha| \|f\|_{\infty,1}.$
 - (c) $||f + g||_{\infty,1} = ||f + g||_{\infty} + ||f' + g'||_{\infty} \le ||f||_{\infty} + ||g||_{\infty} + ||f'||_{\infty} + ||g'||_{\infty} = ||f||_{\infty,1} + ||g||_{\infty,1}$

Therefore $\|\cdot\|_{\infty,1}$ is a norm on $C^1(I)$.

(d) [25p] Show that $(C^1(I), \|\cdot\|_{\infty,1})$ is a Banach space.

[HINT: If f_n is a Cauchy sequence in $C^1(I)$ then f_n and f'_n are Cauchy sequences in C(I). You may assume that C(I) is complete. The Fundamental Theorem of Calculus tells us that $f_n(x) - f_n(a) = \int_a^x f'_n(t)dt$. You may assume that $\lim_{n\to\infty} \int_a^x f'_n(t)dt = \int_a^x \lim_{n\to\infty} f'_n(t)dt$.]

Let f_n be a Cauchy sequence in $C^1(I)$. Then f_n and f'_n are Cauchy sequences in C(I) – which is complete. So $f(x) := \lim_{n \to \infty} f_n(x)$ and $g(x) := \lim_{n \to \infty} f'_n(x)$ are continuous. We must prove that f is differentiable and that f' = g.

By the Fundamental Theorem of Calculus,

$$f_n(x) - f(x) = \int_a^x f'_n(t) dt$$

for all n. So

$$f(x) - f(a) = \lim_{n \to \infty} f_n(x) - f_n(a)$$
$$= \lim_{n \to \infty} \int_a^x f'_n(t) dt$$
$$= \int_a^x \lim_{n \to \infty} f'_n(t) dt$$
$$= \int_a^x g(t) dt.$$

This proves that f is differentiable and that f' = g. Therefore $f \in C^1(I)$ and $||f_n - f||_{\infty,1} \to 0$.