

2016.01.04 MAT461 Fonksiyonel Analiz I – Final Sınavın Çözümleri N. Course

Soru 1 (Operators Defined via Forms). Let X be a Hilbert space.

(a) [4p] Give the definition of a sesquilinear form on X.

A sesquilinear form is a function $s: X \times X \to \mathbb{C}$ such that (a) $s(\alpha f + \beta g, h) = \overline{\alpha}s(f, h) + \overline{\beta}s(g, h)$; and (b) $s(f, \alpha g + \beta h) = \alpha s(f, g) + \beta s(f, h)$ for all $f, g \in X$ and for all $\alpha, \beta \in \mathbb{C}$.

(b) [12p] Let $A \in \mathcal{B}(X)$. Show that there exists a unique operator $A^* \in \mathcal{B}(X)$ such that

$$\langle f, A^*g \rangle = \langle Af, g \rangle$$

for all $f, g \in X$.

Define $s: X \times X \to \mathbb{C}$ by $s(f,g) = \langle Af,g \rangle$. It is easy to see that s is sesquilinear because A is linear and inner products are sesquilinear.

By Lemma 2.11, it follows that \exists a unique bounded operator A^* such that

 $s(f,g) = \langle f, A^*, g \rangle$

for all $f, g \in X$ and we are finished.

(c) [1p] What name do we give to A^* ?

 A^* is called the *adjoint operator* of A.

(d) [8p] Show that $||A|| = ||A^*||$

By Lemma 2.11

$$\|A^*\| = \sup_{\|f\| = \|g\| = 1} |\langle f, A^*g \rangle| = \sup_{\|f\| = \|g\| = 1} |\langle Af, g \rangle| = \sup_{\|f\| = \|g\| = 1} |\langle g, Af \rangle| = \|A\| \, .$$

Soru 2 (The Spectral Theorem for Compact Symmetric Operators). Let X be a Hilbert space.

(a) [7p] Suppose that $B: X \to X$ is a bounded operator and suppose that λ is an eigenvalue of B. Show that $|\lambda| \leq ||B||$.

A really easy question so that everyone can get some points: Suppose that $Bu = \lambda u$ for some unit vector $u \in \mathfrak{D}(B)$. Then by the definition of the operator norm, $\|B\| = \sup_{\|f\|=1, f \in \mathfrak{D}(B)} \|Bf\| \ge \|Bu\| = \lambda$ and we are finished.

(b) [4p] Give the definition of a symmetrical operator.

An operator $A : \mathfrak{D}(A) \subseteq X \to X$ is called *symmetrical* iff its domain is dense and if $\langle g, Af \rangle = \langle Ag, f \rangle$ for all $f, g \in \mathfrak{D}(A)$.

Suppose that the linear operator $A : X \to X$ is symmetrical and compact. Suppose that $\alpha_1 \in \mathbb{R}$ is a eigenvalue of A and suppose that $|\alpha_1| = ||A||$. (We proved in class that it is always possible to find such an eigenvalue.) Let u_1 be a corresponding normalised eigenvector $(||u_1|| = 1)$.

Define

$$X_1 := \{u_1\}^{\perp} = \{f \in X : \langle u_1, f \rangle = 0\} \subseteq X.$$

Then

$$f \in X_1 \implies \langle u_1, Af \rangle = \langle Au_1, f \rangle = \alpha_1 \langle u_1, f \rangle = 0 \implies Af \in X_1.$$

So we can define a new operator $A_1: X_1 \to X_1$ by $A_1 f := A f$.

(c) [7p] Show that A_1 is symmetrical.

Let $f, g \in X_1 \subseteq X$. Then $\langle f, A_1 g \rangle = \langle f, Ag \rangle = \langle Af, g \rangle = \langle A_1 f, g \rangle$

since A is symmetrical. Therefore A_1 is also symmetrical.

(d) [7p] Show that A_1 is compact.

Let x_n be a bounded sequence in X_1 . But X_1 is a subset of X, so x_n is also a bounded sequence in X. Since A is compact, \exists a subsequence x_{n_k} such that Ax_{n_k} converges. But $A_1 = A|_{X_1}$, so A_1 must also be compact. (Basically, A_1 is compact because A is compact. Shame on you if you don't get this easy question correct.)

Soru 3 (Orthogonal Complements and Orthogonal Projection). Let X be a Hilbert space. Let M be a closed linear subspace of X.

(a) [3p] Give the definition of a *total* set.

A set $S \subseteq X$ is said to be total in X iff the span of S is dense in X.

(b) [4p] Give the definition of the orthogonal projection corresponding to M, P_M .

By the Projection Theorem, $\forall f \in X$, \exists unique $f_{\parallel} \in M$ and $f_p erp \in M^{\perp}$ such that $f = f_{\parallel} + f_{\perp}$. The orthogonal projection corresponding to M is the map $P_M : X \to M$ defined by $P_M f := f_{\parallel}$.

(c) [7p] Calculate $||P_M||$.

Clearly $||P_M|| = 1$.

If $f \in M$, then $P_M f = f_{\parallel} = f$ which gives us $||P_M|| \ge 1$. For general $f \in X$, we have that $||f||^2 = ||f_{\parallel}||^2 + ||f_{\perp}||^2 \ge ||f_{\parallel}||^2 = ||P_M f||^2$. Thus $||P_M f|| \le ||f||$ for all $f \in X$, which gives us $||P_M|| \le 1$.

Let $S \subseteq X$ be a subset of X.

(d) [11p] Show that

$$S^{\perp} = \{0\} \qquad \iff \qquad S \text{ is total.}$$

First suppose that S is total. Then

 $S^{\perp \perp} = \overline{\operatorname{span}(S)} = X$

which implies that $S^{\perp} = \{0\}.$

Conversely, suppose that $S^{\perp} = \{0\}$. Then

$$\overline{\text{span}(S)} = S^{\perp \perp} = \{0\}^{\perp} = X.$$

Hence S is total in X.

Soru 4 (Inner Products). Let X be a vector space.

(a) [5p] Give the definition of an *inner product* on X.

An inner product is a function $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{C}$ such that (i) $\langle \alpha f + \beta g, h \rangle = \overline{\alpha} \langle f, h \rangle + \overline{\beta} \langle g, h \rangle$ for all $f, g, h \in X$ and for all $\alpha, \beta \in \mathbb{C}$; (ii) $\langle f, \alpha g + \beta h \rangle = \alpha \langle f, g \rangle + \beta \langle f, h \rangle$ for all $f, g, h \in X$ and for all $\alpha, \beta \in \mathbb{C}$; (iii) $\langle f, f \rangle > 0$ for all $f \in X, f \neq 0$; and (iv) $\langle f, g \rangle = \overline{\langle g, f \rangle}$ for all $f, g \in X$.

(b) [5p] Give an example of an inner product space. Prove that your inner product satisfies the definition that you wrote in part (a).

One example would be \mathbb{R}^2 with $\langle x, y \rangle = x_1 y_1 + x_2 y_2$. Proof omitted.

Now let X be a Hilbert space. The *Parallelogram Law* tell us that

$$||f + g||^{2} + ||f - g||^{2} = 2 ||f||^{2} + 2 ||g||^{2}$$

for all $f, g \in X$. The Generalised Parallelogram Law states that

$$\left\|\sum_{j=1}^{n} x_{j}\right\|^{2} + \sum_{1 \le j < k \le n} \left\|x_{j} - x_{k}\right\|^{2} = n \sum_{j=1}^{n} \left\|x_{j}\right\|^{2}$$
(1)

for all $\{x_1, x_2, \ldots, x_n\} \subseteq X$. Note that the case n = 2 is the same as the Parallelogram Law.

(c) [15p] Prove the Generalised Parallelogram Law.

Let x_1, x_2, \ldots, x_n be any vectors in X. First we calculate that

$$\left\| \sum_{j=1}^{n} x_{j} \right\|^{2} = \left\langle \sum_{j=1}^{n} x_{j}, \sum_{k=1}^{n} x_{k} \right\rangle = \sum_{j=1}^{n} \sum_{k=1}^{n} \left\langle x_{j}, x_{k} \right\rangle$$
$$= \sum_{j} \left\| x_{j} \right\|^{2} + \sum_{j \leq k} \left\langle x_{j}, x_{k} \right\rangle$$
$$= \sum_{j} \left\| x_{j} \right\|^{2} + \sum_{j \leq k} \left(\left\langle x_{j}, x_{k} \right\rangle + \left\langle x_{k}, x_{j} \right\rangle \right).$$

Moreover

$$\sum_{1 \le j < k \le n} \|x_j - x_k\|^2 = \sum_{j < k} \langle x_j - x_k, x_j - x_k \rangle$$
$$= \sum_{j < k} \left(\|x_j\|^2 - \langle x_j, x_k \rangle - \langle x_k, x_j \rangle + \|x_k\|^2 \right)$$
$$= (n-1) \sum_j \|x_j\|^2 - \sum_{j < k} \left(\langle x_j, x_k \rangle + \langle x_k, x_j \rangle \right)$$

Taking the sum of these two equations then gives (1).

Soru 5 (Compact Operators). Let X be a normed space.

(a) [3p] Give the definition of a *compact set*.

A set $S \subseteq X$ is called *compact* iff every open cover has a finite subcover.

(b) [5p] Give the definition of a *compact operator*.

An operator K is called a *compact* operator iff, for all bounded sequences $(x_n) \subseteq X$ there exists a subsequence (x_{n_j}) such that $(Kx_{n_j}) \subseteq Y$ is convergent.

(c) [5p] Give an example of a compact operator. Prove that your operator is compact.

There are many many many simple examples you could give.

Let $A : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by Af = 7f. Every operator on a finite dimensional vector space is bounded, and every bounded operator is compact. So this operator is clearly compact.

Let $K : X \to X$ be a compact operator. Let \overline{X} denote the completion of X. By the B.L.T. Theorem, \exists a unique continuous extension of K to \overline{X} . Let $\overline{K} : \overline{X} \to \overline{X}$ denote this extension.

(d) [12p] Show that \overline{K} is a compact operator.

Let $f_n \in \overline{X}$ be a bounded sequence. We need to show that Af_n has a convergent subsequence.

For each n, choose a sequence $(g_{n,j})_{j=1}^{\infty} \subseteq X$ such that $g_{n,j} \to f_n \in \overline{X}$. We can always do this because X is dense in \overline{X} . The sequence $(g_{n,n})$ must be bounded because f_n is bounded. Since K is compact, \exists a subsequence such that $Kg_{n_j,n_j} \to g \in \overline{X}$.

But then

$$\|\bar{K}f_{n_j} - g\| \le \|K\| \|f_{n_j} - g_{n_j, n_j}\| + \|Kg_{n_j, n_j} - g\| \to 0.$$

So $\bar{K}f_{n_j} \to g$.

Therefore \bar{K} is compact.