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Soru 1 (Operators Defined via Forms). Let X be a Hilbert space.

(a) [4p] Give the definition of a sesquilinear form on X.

A sesquilinear form is a function s : X ×X → C such that

(a) s(αf + βg, h) = ᾱs(f, h) + β̄s(g, h); and

(b) s(f, αg + βh) = αs(f, g) + βs(f, h)

for all f, g ∈ X and for all α, β ∈ C.

(b) [12p] Let A ∈ B(X). Show that there exists a unique operator A∗ ∈ B(X) such that

〈f,A∗g〉 = 〈Af, g〉

for all f, g ∈ X.

Define s : X ×X → C by s(f, g) = 〈Af, g〉. It is easy to see that s is sesquilinear because
A is linear and inner products are sesquilinear.

By Lemma 2.11, it follows that ∃ a unique bounded operator A∗ such that

s(f, g) = 〈f,A∗, g〉

for all f, g ∈ X and we are finished.

(c) [1p] What name do we give to A∗?

A∗ is called the adjoint operator of A.

(d) [8p] Show that ‖A‖ = ‖A∗‖

By Lemma 2.11

‖A∗‖ = sup
‖f‖=‖g‖=1

|〈f,A∗g〉| = sup
‖f‖=‖g‖=1

|〈Af, g〉| = sup
‖f‖=‖g‖=1

|〈g,Af〉| = ‖A‖ .

Soru 2 (The Spectral Theorem for Compact Symmetric Operators). LetX be a Hilbert
space.

(a) [7p] Suppose that B : X → X is a bounded operator and suppose that λ is an eigenvalue of
B. Show that |λ| ≤ ‖B‖.

A really easy question so that everyone can get some points:
Suppose that Bu = λu for some unit vector u ∈ D(B). Then by the definition of the
operator norm,

‖B‖ = sup
‖f‖=1,f∈D(B)

‖Bf‖ ≥ ‖Bu‖ = λ

and we are finished.
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(b) [4p] Give the definition of a symmetrical operator.

An operator A : D(A) ⊆ X → X is called symmetrical iff its domain is dense and if

〈g,Af〉 = 〈Ag, f〉

for all f, g ∈ D(A).

Suppose that the linear operator A : X → X is symmetrical and compact. Suppose that α1 ∈ R
is a eigenvalue of A and suppose that |α1| = ‖A‖. (We proved in class that it is always possible
to find such an eigenvalue.) Let u1 be a corresponding normalised eigenvector (‖u1‖ = 1).

Define
X1 := {u1}⊥ = {f ∈ X : 〈u1, f〉 = 0} ⊆ X.

Then
f ∈ X1 =⇒ 〈u1, Af〉 = 〈Au1, f〉 = α1 〈u1, f〉 = 0 =⇒ Af ∈ X1.

So we can define a new operator A1 : X1 → X1 by A1f := Af .

(c) [7p] Show that A1 is symmetrical.

Let f, g ∈ X1 ⊆ X. Then

〈f,A1g〉 = 〈f,Ag〉 = 〈Af, g〉 = 〈A1f, g〉

since A is symmetrical. Therefore A1 is also symmetrical.

(d) [7p] Show that A1 is compact.

Let xn be a bounded sequence in X1. But X1 is a subset of X, so xn is also a bounded
sequence in X. Since A is compact, ∃ a subsequence xnk

such that Axnk
converges. But

A1 = A|X1
, so A1 must also be compact.

(Basically, A1 is compact because A is compact. Shame on you if you don’t get this easy
question correct.)

Soru 3 (Orthogonal Complements and Orthogonal Projection). LetX be a Hilbert space.
Let M be a closed linear subspace of X.

(a) [3p] Give the definition of a total set.

A set S ⊆ X is said to be total in X iff the span of S is dense in X.

(b) [4p] Give the definition of the orthogonal projection corresponding to M , PM .

By the Projection Theorem, ∀ f ∈ X, ∃ unique f‖ ∈ M and fperp ∈ M⊥ such that
f = f‖ + f⊥. The orthogonal projection corresponding to M is the map PM : X → M
defined by PMf := f‖.

(c) [7p] Calculate ‖PM‖.

Clearly ‖PM‖ = 1.

If f ∈ M , then PMf = f‖ = f which gives us ‖PM‖ ≥ 1. For general f ∈ X, we have that

‖f‖2 =
∥∥f‖∥∥2

+ ‖f⊥‖2 ≥
∥∥f‖∥∥2

= ‖PMf‖2. Thus ‖PMf‖ ≤ ‖f‖ for all f ∈ X, which gives
us ‖PM‖ ≤ 1.

Let S ⊆ X be a subset of X.
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(d) [11p] Show that

S⊥ = {0} ⇐⇒ S is total.

First suppose that S is total. Then

S⊥⊥ = span(S) = X

which implies that S⊥ = {0}.

Conversely, suppose that S⊥ = {0}. Then

span(S) = S⊥⊥ = {0}⊥ = X.

Hence S is total in X.

Soru 4 (Inner Products). Let X be a vector space.

(a) [5p] Give the definition of an inner product on X.

An inner product is a function 〈·, ·〉 : X ×X → C such that

(i) 〈αf + βg, h〉 = α 〈f, h〉+ β 〈g, h〉 for all f, g, h ∈ X and for all α, β ∈ C;

(ii) 〈f, αg + βh〉 = α 〈f, g〉+ β 〈f, h〉 for all f, g, h ∈ X and for all α, β ∈ C;

(iii) 〈f, f〉 > 0 for all f ∈ X, f 6= 0; and

(iv) 〈f, g〉 = 〈g, f〉 for all f, g ∈ X.

(b) [5p] Give an example of an inner product space. Prove that your inner product satisfies the
definition that you wrote in part (a).

One example would be R2 with 〈x, y〉 = x1y1 + x2y2. Proof omitted.

Now let X be a Hilbert space. The Parallelogram Law tell us that

‖f + g‖2 + ‖f − g‖2 = 2 ‖f‖2 + 2 ‖g‖2

for all f, g ∈ X. The Generalised Parallelogram Law states that∥∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥∥
2

+
∑

1≤j<k≤n

‖xj − xk‖2 = n

n∑
j=1

‖xj‖2 (1)

for all {x1, x2, . . . , xn} ⊆ X. Note that the case n = 2 is the same as the Parallelogram Law.

(c) [15p] Prove the Generalised Parallelogram Law.
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Let x1, x2, . . . , xn be any vectors in X. First we calculate that∥∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥∥
2

=

〈
n∑

j=1

xj ,

n∑
k=1

xk

〉
=

n∑
j=1

n∑
k=1

〈xj , xk〉

=
∑
j

‖xj‖2 +
∑
j 6=k

〈xj , xk〉

=
∑
j

‖xj‖2 +
∑
j<k

(〈xj , xk〉+ 〈xk, xj〉) .

Moreover ∑
1≤j<k≤n

‖xj − xk‖2 =
∑
j<k

〈xj − xk, xj − xk〉

=
∑
j<k

(
‖xj‖2 − 〈xj , xk〉 − 〈xk, xj〉+ ‖xk‖2

)
= (n− 1)

∑
j

‖xj‖2 −
∑
j<k

(〈xj , xk〉+ 〈xk, xj〉)

Taking the sum of these two equations then gives (1).

Soru 5 (Compact Operators). Let X be a normed space.

(a) [3p] Give the definition of a compact set.

A set S ⊆ X is called compact iff every open cover has a finite subcover.

(b) [5p] Give the definition of a compact operator.

An operator K is called a compact operator iff, for all bounded sequences (xn) ⊆ X there
exists a subsequence (xnj

) such that (Kxnj
) ⊆ Y is convergent.

(c) [5p] Give an example of a compact operator. Prove that your operator is compact.

There are many many many simple examples you could give.

Let A : R2 → R2 be defined by Af = 7f . Every operator on a finite dimensional vector space
is bounded, and every bounded operator is compact. So this operator is clearly compact.

Let K : X → X be a compact operator. Let X̄ denote the completion of X. By the B.L.T.
Theorem, ∃ a unique continuous extension of K to X̄. Let K̄ : X̄ → X̄ denote this extension.

(d) [12p] Show that K̄ is a compact operator.

Let fn ∈ X̄ be a bounded sequence. We need to show that Afn has a convergent subsequence.

For each n , choose a sequence (gn,j)
∞
j=1 ⊆ X such that gn,j → fn ∈ X̄. We can always do

this because X is dense in X̄. The sequence (gn,n) must be bounded because fn is bounded.
Since K is compact, ∃ a subsequence such that Kgnj ,nj → g ∈ X̄.

But then ∥∥K̄fnj
− g
∥∥ ≤ ‖K‖∥∥fnj

− gnj ,nj

∥∥+
∥∥Kgnj ,nj

− g
∥∥→ 0.

So K̄fnj → g.

Therefore K̄ is compact.
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