

OKAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK TEMEL BİLİMLERİ BÖLÜMÜ

2016–17 ML

MAT462 Fonksiyonel Analiz II – Ödev 2

N. Course

SON TESLİM TARİHİ: Pazartesi 20 Mart 2017 saat 17:00'e kadar.

Egzersiz 4 (The Graph of an Operator). ^[25p] Let X and Y be Banach spaces and let $A : X \to Y$ be a linear map (defined on all of X). Show that $\Gamma(A)$ is a subspace of $X \oplus Y$.

Egzersiz 5 (Proof of the Closed Graph Theorem). [25p] Let X and Y be Banach spaces and let $A: X \to Y$ be a linear map (defined on all of X). Show that

A is bounded \implies A has closed graph.

[HINT: Start with a Cauchy sequence (x_n, Ax_n) in $\Gamma(A)$. Can you prove that $\lim_{n\to\infty} (x_n, Ax_n)$ exists and is in $\Gamma(A)$? What does this tell us?]

Egzersiz 6 (Dual Space). Let $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$. Consider the Banach spaces $\ell^p(\mathbb{N})$, $\ell^q(\mathbb{N})$ and $\ell^p(\mathbb{N})^*$, where

$$\ell^{p}(\mathbb{N}) := \Big\{ a = (a_{j})_{j=1}^{\infty} \subseteq \mathbb{C} : \|a\|_{p} := \Big(\sum_{j=1}^{\infty} |a_{j}|^{p}\Big)^{\frac{1}{p}} < \infty \Big\}.$$

Let $b = (b_j)_{j=1}^{\infty} \in \ell^q(\mathbb{N})$. Define

$$a_j = \begin{cases} \frac{|b_j|^q}{b_j} & \text{if } b_j \neq 0\\ 0 & \text{otherwise.} \end{cases}$$

- (a) [10p] Show that $a = (a_j)_{j=1}^{\infty} \in \ell^p(\mathbb{N})$. [HINT: $\frac{1}{p} + \frac{1}{q} = 1 \iff \frac{q+p}{pq} = 1 \iff \dots$ Show first that $||a||_p^p = ||b||_q^q$.]
- (b) [10p] Show that $||b||_q^{q-1} = ||a||_p$.

For each $y \in \ell^q(\mathbb{N})$, define $l_y : \ell^p(\mathbb{N}) \to \mathbb{C}$ by

$$l_y(x) = \sum_{j=1}^{\infty} y_j x_j.$$

- (c) [10p] Use the Hölder Inequality to show that $||l_y|| \leq ||y||_q$ for all $y \in \ell^q(\mathbb{N})$.
- (d) [15p] Show that $||l_y|| = ||y||_q$ for all $y \in \ell^q(\mathbb{N})$. [HINT: Choose $x \in \ell^p(\mathbb{N})$ such that $x_j y_j = |y_j|^q$. Why can we always do this? Use part (b).]
- (e) [5p] Show that $l_y \in \ell^p(\mathbb{N})^*$ for all $y \in \ell^q(\mathbb{N})$.

Ödev 1'in çözümleri

- 1. That U is closed $\iff X \setminus U$ is open, is trivial. Note that U is closed and nowhere dense if and only if $U^{\circ} = \emptyset$. Moreover, $X \setminus U$ is dense if and only if $\overline{X \setminus U} = X$. The result then follows from the identity $X \setminus U^{\circ} = \overline{X \setminus U}$.
- 2. Since A^{-1} is continuous $\iff A$ is open, the result follows by the Open Mapping Theorem.
- 3. Suppose that $\mathfrak{D}(A) \subseteq X$ and $\operatorname{Ran}(A) \subseteq Y$. Since A is closed, its graph $\Gamma(A) = \{(x, Ax) : x \in \mathfrak{D}(A)\} \subseteq X \oplus Y$ is a closed set. But $\Gamma(A^{-1}) = \{(y, A^{-1}y) : y \in \operatorname{Ran}(A)\} = \{(Ax, x) : x \in \mathfrak{D}(A)\} \subseteq Y \oplus X$ is clearly isomorphic to $\Gamma(A)$ so must be closed also. Therefore A^{-1} is closed.