

2016 - 17	MAT462 Fonksiyonel Analiz II – Ödev 4	N. Course
-----------	---------------------------------------	-----------

SON TESLİM TARİHİ: Pazartesi 8 Mayıs 2017 saat 17:00'e kadar.

Egzersiz 9 (Compact Operators and Finite Rank Operators). Let X be a Hilbert space

- (a) [10p] Let $K \in \mathcal{B}(X)$. Show that K^*K is symmetrical.
- (b) [20p] Let $A \in \mathcal{B}(X)$. Show that $\operatorname{Ker}(A^*A) = \operatorname{Ker}(A)$.
- (c) [20p] Let $T \in \mathcal{B}(X)$. Show that

T is a finite rank operator $\iff T^*$ is a finite rank operator.

Egzersiz 10 (Fredholm Theory). Let X be a Hilbert space. Let $u, v \in X$ be any two vectors that satisfy $\langle u, v \rangle = 1$. Define an operator $K : X \to X$ by $K = \langle v, \cdot \rangle u$.

- (a) [20p] Calculate $\operatorname{Ker}(1-K)$.
- (b) [10p] Calculate K^*
- (c) [20p] Calculate $\operatorname{Ran}(1-K)^{\perp}$.

Odev 3'ün çözümleri

- 7. (a) Let x₀ ∈ Y and let x_n ∈ Y be a sequence converging to x₀. Let l ∈ Q. Clearly l(x_n) = 0 for all n. By continuity it follows that l(x₀) = l(lim_{n→∞} x_n) = lim_{n→∞} l(x_n) = lim_{n→∞} 0 = 0 also.
 (b) Now suppose that x₀ ∈ X \ Y. Then by Corollary 4.12, there exists l ∈ Q such that l(x₀) = dist(x₀, Y) > 0. The result follows by contraposition.
- 8. (a) Clearly $\|\delta^n\|_{\infty} = \sup_j \left|\delta_j^n\right| = |\delta_n^n| = 1 < \infty$. So $\delta^n \in \ell^{\infty}(\mathbb{N})$ for all n. Let $1 \le p < \infty$. Then $\|\delta^n\|_p^p = \sum_{j=1}^{\infty} \left|\delta_j^n\right|^p = |\delta_n^n|^p = 1 < \infty$. So $\delta^n \in \ell^p(\mathbb{N})$ for all n.

(b) Clearly $\|\delta^n - 0\|_p = 1 \not\rightarrow 0$ for all $1 \le p \le \infty$. Therefore $\delta^n \not\rightarrow 0$.

(c) Let $l \in \ell^p(\mathbb{N})^*$. Then $\exists y \in \ell^q(\mathbb{N})$ (where $\frac{1}{p} + \frac{1}{q} = 1$) such that $l(x) = \sum_{j=1}^{\infty} y_j x_j$ for all $x \in \ell^p(\mathbb{N})$. Therefore $|l(\delta^n)| = \left|\sum_{j=1}^{\infty} y_j \delta_j^n\right| = |y_n| \to 0$ as $n \to \infty$, since $y \in \ell^q(\mathbb{N})$. Therefore $\delta^n \to 0$ as $n \to \infty$.

(d) I will use proof by contradiction: Suppose that $\exists b$ such that $\delta^n \rightharpoonup b$ in $\ell^1(\mathbb{N})$. Thus $l(\delta^n) \rightarrow l(b)$ for all $l \in \ell^1(\mathbb{N})^*$

Consider first the functional $\tilde{l} \in \ell^1(\mathbb{N})^*$ defined by $\tilde{l}(x) = x_1 + x_2 + x_3 + x_4 + \dots$ Then $\tilde{l}(\delta^n) = 1$ for all $n \in \mathbb{N}$, so

$$b_1 + b_2 + b_3 + \ldots = \tilde{l}(b) = \lim_{n \to \infty} l(\delta^n) = \lim_{n \to \infty} 1 = 1$$
 (1)

Now define a family of linear functionals $l_j(x) = x_j$. Clearly l_j is bounded and linear for all j. However $b_j = l_j(b) = \lim_{n \to \infty} l_j(\delta^n) = \lim_{n \to \infty} \delta_j^n = 0$ for all j, which contradicts (1).