
OKAN ÜNİVERSİTESİ
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Question 1 (Weak Convergence).

(a) [5 pts] Let X be a Banach space. Give the definition of weak convergence in X [i.e. xn ⇀ x for
xn ∈ X.].

We say that xn converges weakly to x, and write xn ⇀ x, iff l(xn) → l(x) for all l ∈ X∗.

Consider the Banach space ℓp(N) where

ℓp(N) :=
{
a = (aj)

∞
j=1 ⊆ C : ∥a∥p :=

( ∞∑
j=1

|aj |p
) 1

p

< ∞
}

for 1 ≤ p < ∞, and

ℓ∞(N) :=
{
a = (aj)

∞
j=1 ⊆ C : ∥a∥∞ := sup

j
|aj | < ∞

}
.

Define

δnj =

{
1 if n = j

0 if n ̸= j.

[For example, δ5 is the sequence (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . .)]

(b) [6 pts] Show that δn ∈ ℓp(N) for all n ∈ N and for all 1 ≤ p ≤ ∞.

Clearly
∥δn∥∞ = sup

j

∣∣dnj ∣∣ = |δnn | = 1 < ∞.

So δn ∈ ℓ∞(N) for all n.
Let 1 ≤ p < ∞. Then

∥δn∥pp =
∞∑
j=1

∣∣δnj ∣∣p = ∥δnn∥ = 1 < ∞.

So δn ∈ ℓp(N) for all n.

(c) [7 pts] Let 1 < p < ∞. Show that δn ⇀ 0.

Let l ∈ ℓp(N)∗. Then ∃ y ∈ ℓq(N) ( 1p + 1
q = 1) such that

l(x) =
∞∑
j=1

yjxj

for all x ∈ ℓp(N).
So

|l(δn)| =

∣∣∣∣∣∣
∞∑
j=1

yjδ
n
j

∣∣∣∣∣∣ = |yn| → 0

as n → ∞ since y ∈ ℓq(N).
Therefore δ ⇀ 0 as n → ∞.
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(d) [7 pts] Show that δn is not weakly convergent in ℓ1(N).

Consider first the functional l ∈ ℓ1(N)∗ defined by l(x) = x1. Then l(δn) = 0 for all n ≥ 2.
So clearly l(δn) → 0 = l(0). Therefore, if δn is weakly convergent in ℓ1(N), then δn ⇀ 0.
Next consider l̃ ∈ ℓ1(N)∗ defined by l̃(x) = x1 + x2 + x3 + x4 + . . .. Then l̃(δn) = 1 for all
n ∈ N, so l̃(δn) ̸→ 0 as n → ∞.
Therefore δn is not weakly convergent in ℓ1(N).

Question 2 (Dual Spaces). Let X be a normed vector space.

(a) [4 pts] Give the definition of the dual space of X.

The dual space of X is X∗ = B(X,C) [ or B(X,R) if X is a real vector space].

(b) [4 pts] Let x0 ∈ X and Y ⊆ X. Give the definition of

dist(x0, Y ).

dist(x0, Y ) = inf
y∈Y

∥x0 − y∥X

Corollary 12. Let X be a normed vector space and let Y ⊆ X be a subspace. Let
x0 ∈ X \ Y . Then ∃l ∈ X∗ such that

(i) l(y) = 0 ∀y ∈ Y ;

(ii) l(x0) = dist(x0, Y ); and

(iii) ∥l∥ = 1.

(c) [17 pts] Let X be a normed vector space and let Y ⊆ X be a subspace. Define

S := {f ∈ X∗ : f(y) = 0 ∀y ∈ Y } ⊆ X∗.

Use Corollary 4.12 to prove that

x0 ∈ Y ⇐⇒ l(x0) = 0 ∀l ∈ S.

“ =⇒ ”
Let x0 ∈ Y . Then ∃ a sequence (xn) ⊆ Y such that xn → x0. Let l ∈ S. Then l(xn) = 0 ∀n.
It follows by continuity that l(x0) = 0 also. 8

“⇐=”
Now suppose that x0 ̸∈ Y . By Corollary 4.12, ∃l ∈ X∗ such that l(y) = 0 ∀y ∈ Y (i.e. l ∈ S)

and l(x0) = dist(x0, Y ) > 0. Therefore ∃l ∈ S such that l(x0) ̸= 0, and we are finished. 9

Question 3 (Weak and Strong Convergence of Operators). Consider the Hilbert space ℓ2(N) ={
a = (aj)

∞
j=1 ⊆ C : ∥a∥2 < ∞

}
with the inner product ⟨x, y⟩2 =

∑∞
j=1 xjyj .

Define two sequences of (bounded linear) operators Sn : ℓ2(N) → ℓ2(N) and S∗
n : ℓ2(N) → ℓ2(N) by

Sn(x1, x2, x3, x4, x5, x6, . . .) = (xn+1, xn+2, xn+3, xn+4, . . .)

and
S∗
n(x1, x2, x3, x4, x5, x6, . . .) = (0, 0, . . . , 0︸ ︷︷ ︸

n terms

, x1, x2, x3, x4, . . .).

In other words, Sn shifts every term, n places to the left; and S∗
n shifts every term, n places to the

right.
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(a) [5 pts] Show that ∥Sn∥ = 1, ∀n ∈ N.

First ∥Snx∥2 = (
∑∞

j=1 |(Snx)j |2)
1
2 = (

∑∞
j=n+1 |xj |2)

1
2 ≤ (

∑∞
j=1 |xj |2)

1
2 = ∥x∥2 for all x. So

∥Sn∥ ≤ 1. Moreover, ∥δm∥2 = 1 for all m ∈ N, and
∥∥Snδ

n+1
∥∥
2
=

∥∥δ1∥∥
2
= 1 =

∥∥δn+1
∥∥
2
.

Therefore ∥Sn∥ ≥ 1.

(b) [5 pts] Show that ∥S∗
n∥ = 1, ∀n ∈ N.

∥S∗
nx∥2 = (

∑∞
j=1 |(S∗

nx)j |
2
)

1
2 = (

∑∞
j=n+1 |(S∗

nx)j |
2
)

1
2 = (

∑∞
j=1 |xj |2)

1
2 = ∥x∥2 for all x.

Therefore ∥S∗
n∥ = 1.

(c) [5 pts] Show that S∗
n is the adjoint of Sn.

[HINT: In other words, show that ⟨x, S∗
ny⟩2 = ⟨Snx, y⟩2 for all x, y ∈ ℓ2(N).]

⟨x, S∗
ny⟩ =

∑∞
j=1 xj(S

∗
ny)j =

∑∞
j=n+1 xjyj−n =

∑∞
j=1 xn+jyj =

∑∞
j=1 (Snx)jyj = ⟨Snx, y⟩

(d) [5 pts] Show that Sn ̸→ 0 as n → ∞.

Since ∥Sn∥ = 1 for all n, it follows that ∥Sn − 0∥ ̸→ 0. So Sn ̸→ 0.

(e) [5 pts] Show that s-limn→∞ Sn = 0.

Let x ∈ ℓ2(N). Then ∥x∥2 < ∞. So
∑n

j=1 |xj |2 →
∑∞

j=1 |xj |2 as n → ∞. Therefore

∥Snx∥2 = (
∞∑
j=1

|(Snx)j |2)
1
2 = (

∞∑
j=n+1

|xj |2)
1
2 → 0

as n → ∞. Hence Snx → 0 for all x, and thus s-limn→∞ Sn = 0.

Question 4 (Closed Operators). Let X and Y be Banach spaces.

(a) [4 pts] Give the definition of the graph of an operator A : D(A) ⊆ X → Y .

Γ(A) = {(x,Ax) : x ∈ D(A)}

(b) [4 pts] Give the definition of a closed operator.

An operator is called closed iff its graph is a closed set.

(c) [7 pts] Now suppose that A : X → Y is a bounded operator. Show that A is a closed operator.
[HINT: Start by letting (xn, Axn) be any Cauchy sequence in Γ(A).]

Let (xn, Axn) be a Cauchy sequence in Γ(A) ⊆ X ⊕ Y . Then xn is a Cauchy sequence in
the Banach space X. So xn → x ∈ X.
Now, A is bounded 1 , so A is continuous 1 . Therefore xn → x =⇒ Axn → Ax. So
(xn, Axn) → (x,Ax) ∈ Γ(A). So Γ(A) is closed.

Let (X, ∥·∥X) and (Y, ∥·∥Y ) be Banach space. Let A : D(A) ⊆ X → Y be an operator. We can
define a new norm, called the graph norm associated with A, by

∥x∥A = ∥x∥X + ∥Ax∥Y

for all x ∈ D(A).

(d) [10 pts] Show that A : (D(A), ∥·∥A) → (Y, ∥·∥Y ) is bounded.
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Let x ∈ D(A). Then
∥Ax∥Y ≤ ∥x∥X + ∥Ax∥Y = ∥x∥A .

Therefore ∥A∥ = sup∥x∥A=1 ∥Ax∥Y ≤ 1 < ∞. Therefore A is bounded.

Question 5 (Compact Operators). Let X be a Hilbert space.

(a) [5 pts] Give the definition of a compact operator.

An operator A : X → Y is called compact iff,

(fn) ⊆ X bounded =⇒ (Afn) ⊆ Y has a convergent subsequence.

LetK ∈ K(X) be compact. Let sj be the singular values ofK and let {uj} be the corresponding
orthonormal eigenvectors of K∗K. Then

K =
∑
j

sj ⟨uj , ·⟩ vj

where

vj =
1

sj
Kuj

by Theorem 5.1.

(b) [10 pts] Show that ∥K∥ ≤ maxj{sj}.

∥Kf∥2 =

∥∥∥∥∥∥
∑
j

sj ⟨uj , f⟩ vj

∥∥∥∥∥∥
2

=
∑
j

∥sj ⟨uj , f⟩ vj∥2 (since the vj are orthogonal)

=
∑
j

|sj |2 |⟨uj , f⟩|2

≤ max
j

{sj}
∑
j

|⟨uj , f⟩|2 (since the sj are real and positive)

= max
j

{sj} ∥f∥2 .

Therefore ∥K∥ ≤ maxj{sj}.

(c) [10 pts] Show that ∥K∥ ≥ maxj{sj}.

Finally, choose j0 such that sj0 = maxj{sj}. Then

∥Kuj0∥ =

∥∥∥∥∥∥
∑
j

sj ⟨uj , uj0⟩ vj

∥∥∥∥∥∥
2

= ∥sj0vj0∥ = sj0 .

Therefore
∥K∥ = sup

∥f∥=1

∥Kf∥ ≥ ∥Kuj0∥ = sj0 = max
j

{sj}.
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