OKAN ÜNIVERSİTESİ
FEN EDEBİYAT FAKÜLTESİ
MATEMATİK BÖLÜMÜ
24.05.2012MAT 462 - Fonksiyonel Analiz II - Yarıyıl Sonu Sınavı Çözümleri N. Course

Question 1 (Weak Convergence).
(a) [5 pts] Let X be a Banach space. Give the definition of weak convergence in X [i.e. $x_{n} \rightharpoonup x$ for $x_{n} \in X$.].

We say that x_{n} converges weakly to x, and write $x_{n} \rightharpoonup x$, iff $l\left(x_{n}\right) \rightarrow l(x)$ for all $l \in X^{*}$.
Consider the Banach space $\ell^{p}(\mathbb{N})$ where

$$
\ell^{p}(\mathbb{N}):=\left\{a=\left(a_{j}\right)_{j=1}^{\infty} \subseteq \mathbb{C}:\|a\|_{p}:=\left(\sum_{j=1}^{\infty}\left|a_{j}\right|^{p}\right)^{\frac{1}{p}}<\infty\right\}
$$

for $1 \leq p<\infty$, and

$$
\ell^{\infty}(\mathbb{N}):=\left\{a=\left(a_{j}\right)_{j=1}^{\infty} \subseteq \mathbb{C}:\|a\|_{\infty}:=\sup _{j}\left|a_{j}\right|<\infty\right\}
$$

Define

$$
\delta_{j}^{n}= \begin{cases}1 & \text { if } n=j \\ 0 & \text { if } n \neq j\end{cases}
$$

[For example, δ^{5} is the sequence $(0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0, \ldots)$]
(b) [6 pts] Show that $\delta^{n} \in \ell^{p}(\mathbb{N})$ for all $n \in \mathbb{N}$ and for all $1 \leq p \leq \infty$.

Clearly

$$
\left\|\delta^{n}\right\|_{\infty}=\sup _{j}\left|d_{j}^{n}\right|=\left|\delta_{n}^{n}\right|=1<\infty .
$$

So $\delta^{n} \in \ell^{\infty}(\mathbb{N})$ for all n.
Let $1 \leq p<\infty$. Then

$$
\left\|\delta^{n}\right\|_{p}^{p}=\sum_{j=1}^{\infty}\left|\delta_{j}^{n}\right|^{p}=\left\|\delta_{n}^{n}\right\|=1<\infty
$$

So $\delta^{n} \in \ell^{p}(\mathbb{N})$ for all n.
(c) $[7 \mathrm{pts}]$ Let $1<p<\infty$. Show that $\delta^{n} \rightharpoonup 0$.

Let $l \in \ell^{p}(\mathbb{N})^{*}$. Then $\exists y \in \ell^{q}(\mathbb{N})\left(\frac{1}{p}+\frac{1}{q}=1\right)$ such that

$$
l(x)=\sum_{j=1}^{\infty} y_{j} x_{j}
$$

for all $x \in \ell^{p}(\mathbb{N})$.
So

$$
\left|l\left(\delta^{n}\right)\right|=\left|\sum_{j=1}^{\infty} y_{j} \delta_{j}^{n}\right|=\left|y_{n}\right| \rightarrow 0
$$

as $n \rightarrow \infty$ since $y \in \ell^{q}(\mathbb{N})$.
Therefore $\delta \rightharpoonup 0$ as $n \rightarrow \infty$.
(d) $[7 \mathrm{pts}]$ Show that δ^{n} is not weakly convergent in $\ell^{1}(\mathbb{N})$.

Consider first the functional $l \in \ell^{1}(\mathbb{N})^{*}$ defined by $l(x)=x_{1}$. Then $l\left(\delta^{n}\right)=0$ for all $n \geq 2$. So clearly $l\left(\delta^{n}\right) \rightarrow 0=l(0)$. Therefore, if δ^{n} is weakly convergent in $\ell^{1}(\mathbb{N})$, then $\delta^{n} \rightharpoonup 0$. Next consider $\tilde{l} \in \ell^{1}(\mathbb{N})^{*}$ defined by $\tilde{l}(x)=x_{1}+x_{2}+x_{3}+x_{4}+\ldots$. Then $\tilde{l}\left(\delta^{n}\right)=1$ for all $n \in \mathbb{N}$, so $\tilde{l}\left(\delta^{n}\right) \nrightarrow 0$ as $n \rightarrow \infty$. Therefore δ^{n} is not weakly convergent in $\ell^{1}(\mathbb{N})$.

Question 2 (Dual Spaces). Let X be a normed vector space.
(a) [4 pts] Give the definition of the dual space of X.

The dual space of X is $X^{*}=\mathcal{B}(X, \mathbb{C})$ [or $\mathcal{B}(X, \mathbb{R})$ if X is a real vector space].
(b) [4 pts] Let $x_{0} \in X$ and $Y \subseteq X$. Give the definition of

$$
\operatorname{dist}\left(x_{0}, Y\right)
$$

$$
\operatorname{dist}\left(x_{0}, Y\right)=\inf _{y \in Y}\left\|x_{0}-y\right\|_{X}
$$

Corollary 12. Let X be a normed vector space and let $Y \subseteq X$ be a subspace. Let $x_{0} \in X \backslash \bar{Y}$. Then $\exists l \in X^{*}$ such that
(i) $l(y)=0 \quad \forall y \in Y$;
(ii) $l\left(x_{0}\right)=\operatorname{dist}\left(x_{0}, Y\right)$; and
(iii) $\|l\|=1$.
(c) [17 pts] Let X be a normed vector space and let $Y \subseteq X$ be a subspace. Define

$$
S:=\left\{f \in X^{*}: f(y)=0 \forall y \in Y\right\} \subseteq X^{*}
$$

Use Corollary 4.12 to prove that

$$
x_{0} \in \bar{Y} \quad \Longleftrightarrow \quad l\left(x_{0}\right)=0 \quad \forall l \in S
$$

" \Longrightarrow "
Let $x_{0} \in \bar{Y}$. Then \exists a sequence $\left(x_{n}\right) \subseteq Y$ such that $x_{n} \rightarrow x_{0}$. Let $l \in S$. Then $l\left(x_{n}\right)=0 \forall n$. It follows by continuity that $l\left(x_{0}\right)=0$ also. 8
" "
Now suppose that $x_{0} \notin \bar{Y}$. By Corollary $4.12, \exists l \in X^{*}$ such that $l(y)=0 \forall y \in Y$ (i.e. $l \in S$) and $l\left(x_{0}\right)=\operatorname{dist}\left(x_{0}, Y\right)>0$. Therefore $\exists l \in S$ such that $l\left(x_{0}\right) \neq 0$, and we are finished. 9

Question 3 (Weak and Strong Convergence of Operators). Consider the Hilbert space $\ell^{2}(\mathbb{N})=$ $\left\{a=\left(a_{j}\right)_{j=1}^{\infty} \subseteq \mathbb{C}:\|a\|_{2}<\infty\right\}$ with the inner product $\langle x, y\rangle_{2}=\sum_{j=1}^{\infty} \overline{x_{j}} y_{j}$.

Define two sequences of (bounded linear) operators $S_{n}: \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N})$ and $S_{n}^{*}: \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N})$ by

$$
S_{n}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, \ldots\right)=\left(x_{n+1}, x_{n+2}, x_{n+3}, x_{n+4}, \ldots\right)
$$

and

$$
S_{n}^{*}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, \ldots\right)=(\underbrace{0,0, \ldots, 0}_{n \text { terms }}, x_{1}, x_{2}, x_{3}, x_{4}, \ldots) .
$$

In other words, S_{n} shifts every term, n places to the left; and S_{n}^{*} shifts every term, n places to the right.
(a) [5 pts] Show that $\left\|S_{n}\right\|=1, \forall n \in \mathbb{N}$.

First $\left\|S_{n} x\right\|_{2}=\left(\sum_{j=1}^{\infty}\left|\left(S_{n} x\right)_{j}\right|^{2}\right)^{\frac{1}{2}}=\left(\sum_{j=n+1}^{\infty}\left|x_{j}\right|^{2}\right)^{\frac{1}{2}} \leq\left(\sum_{j=1}^{\infty}\left|x_{j}\right|^{2}\right)^{\frac{1}{2}}=\|x\|_{2}$ for all x. So $\left\|S_{n}\right\| \leq 1$. Moreover, $\left\|\delta^{m}\right\|_{2}=1$ for all $m \in \mathbb{N}$, and $\left\|S_{n} \delta^{n+1}\right\|_{2}=\left\|\delta^{1}\right\|_{2}=1=\left\|\delta^{n+1}\right\|_{2}$. Therefore $\left\|S_{n}\right\| \geq 1$.
(b) [5 pts] Show that $\left\|S_{n}^{*}\right\|=1, \forall n \in \mathbb{N}$.

$$
\begin{aligned}
& \left\|S_{n}^{*} x\right\|_{2}=\left(\sum_{j=1}^{\infty}\left|\left(S_{n}^{*} x\right)_{j}\right|^{2}\right)^{\frac{1}{2}}=\left(\sum_{j=n+1}^{\infty}\left|\left(S_{n}^{*} x\right)_{j}\right|^{2}\right)^{\frac{1}{2}}=\left(\sum_{j=1}^{\infty}\left|x_{j}\right|^{2}\right)^{\frac{1}{2}}=\|x\|_{2} \text { for all } x . \\
& \text { Therefore }\left\|S_{n}^{*}\right\|=1 .
\end{aligned}
$$

(c) [5 pts] Show that S_{n}^{*} is the adjoint of S_{n}.
[HINT: In other words, show that $\left\langle x, S_{n}^{*} y\right\rangle_{2}=\left\langle S_{n} x, y\right\rangle_{2}$ for all $x, y \in \ell^{2}(\mathbb{N})$.]

$$
\left\langle x, S_{n}^{*} y\right\rangle=\sum_{j=1}^{\infty} \overline{x_{j}}\left(S_{n}^{*} y\right)_{j}=\sum_{j=n+1}^{\infty} \overline{x_{j}} y_{j-n}=\sum_{j=1}^{\infty} \overline{x_{n+j}} y_{j}=\sum_{j=1}^{\infty} \overline{\left(S_{n} x\right)_{j}} y_{j}=\left\langle S_{n} x, y\right\rangle
$$

(d) [5 pts] Show that $S_{n} \nrightarrow 0$ as $n \rightarrow \infty$.

(e) [5 pts] Show that s- $\lim _{n \rightarrow \infty} S_{n}=0$.

Let $x \in \ell^{2}(\mathbb{N})$. Then $\|x\|_{2}<\infty$. So $\sum_{j=1}^{n}\left|x_{j}\right|^{2} \rightarrow \sum_{j=1}^{\infty}\left|x_{j}\right|^{2}$ as $n \rightarrow \infty$. Therefore

$$
\left\|S_{n} x\right\|_{2}=\left(\sum_{j=1}^{\infty}\left|\left(S_{n} x\right)_{j}\right|^{2}\right)^{\frac{1}{2}}=\left(\sum_{j=n+1}^{\infty}\left|x_{j}\right|^{2}\right)^{\frac{1}{2}} \rightarrow 0
$$

as $n \rightarrow \infty$. Hence $S_{n} x \rightarrow 0$ for all x, and thus s- $\lim _{n \rightarrow \infty} S_{n}=0$.
Question 4 (Closed Operators). Let X and Y be Banach spaces.
(a) [4 pts] Give the definition of the graph of an operator $A: \mathfrak{D}(A) \subseteq X \rightarrow Y$.

$$
\Gamma(A)=\{(x, A x): x \in \mathfrak{D}(A)\}
$$

(b) [4 pts] Give the definition of a closed operator.

An operator is called closed iff its graph is a closed set.
(c) [7 pts] Now suppose that $A: X \rightarrow Y$ is a bounded operator. Show that A is a closed operator. [HINT: Start by letting ($x_{n}, A x_{n}$) be any Cauchy sequence in $\Gamma(A)$.]

Let $\left(x_{n}, A x_{n}\right)$ be a Cauchy sequence in $\Gamma(A) \subseteq X \oplus Y$. Then x_{n} is a Cauchy sequence in the Banach space X. So $x_{n} \rightarrow x \in X$.
Now, A is bounded 1 , so A is continuous 1 . Therefore $x_{n} \rightarrow x \Longrightarrow A x_{n} \rightarrow A x$. So $\left(x_{n}, A x_{n}\right) \rightarrow(x, A x) \in \Gamma(A)$. So $\Gamma(A)$ is closed.

Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be Banach space. Let $A: \mathfrak{D}(A) \subseteq X \rightarrow Y$ be an operator. We can define a new norm, called the graph norm associated with A, by

$$
\|x\|_{A}=\|x\|_{X}+\|A x\|_{Y}
$$

for all $x \in \mathfrak{D}(A)$.
(d) $[10 \mathrm{pts}]$ Show that $A:\left(\mathfrak{D}(A),\|\cdot\|_{A}\right) \rightarrow\left(Y,\|\cdot\|_{Y}\right)$ is bounded.

Let $x \in \mathfrak{D}(A)$. Then

$$
\|A x\|_{Y} \leq\|x\|_{X}+\|A x\|_{Y}=\|x\|_{A} .
$$

Therefore $\|A\|=\sup _{\|x\|_{A}=1}\|A x\|_{Y} \leq 1<\infty$. Therefore A is bounded.
Question 5 (Compact Operators). Let X be a Hilbert space.
(a) [5 pts] Give the definition of a compact operator.

An operator $A: X \rightarrow Y$ is called compact iff,

$$
\left(f_{n}\right) \subseteq X \text { bounded } \Longrightarrow\left(A f_{n}\right) \subseteq Y \text { has a convergent subsequence. }
$$

Let $K \in \mathcal{K}(X)$ be compact. Let s_{j} be the singular values of K and let $\left\{u_{j}\right\}$ be the corresponding orthonormal eigenvectors of $K^{*} K$. Then

$$
K=\sum_{j} s_{j}\left\langle u_{j}, \cdot\right\rangle v_{j}
$$

where

$$
v_{j}=\frac{1}{s_{j}} K u_{j}
$$

by Theorem 5.1.
(b) [10 pts] Show that $\|K\| \leq \max _{j}\left\{s_{j}\right\}$.

$$
\begin{aligned}
\|K f\|^{2} & =\left\|\sum_{j} s_{j}\left\langle u_{j}, f\right\rangle v_{j}\right\|^{2} \\
& =\sum_{j}\left\|s_{j}\left\langle u_{j}, f\right\rangle v_{j}\right\|^{2} \quad \text { (since the } v_{j} \text { are orthogonal) } \\
& =\sum_{j}\left|s_{j}\right|^{2}\left|\left\langle u_{j}, f\right\rangle\right|^{2} \\
& \leq \max _{j}\left\{s_{j}\right\} \sum_{j}\left|\left\langle u_{j}, f\right\rangle\right|^{2} \quad \text { (since the } s_{j} \text { are real and positive) } \\
& =\max _{j}\left\{s_{j}\right\}\|f\|^{2} .
\end{aligned}
$$

Therefore $\|K\| \leq \max _{j}\left\{s_{j}\right\}$.
(c) [10 pts] Show that $\|K\| \geq \max _{j}\left\{s_{j}\right\}$.

Finally, choose j_{0} such that $s_{j_{0}}=\max _{j}\left\{s_{j}\right\}$. Then

$$
\begin{aligned}
\left\|K u_{j_{0}}\right\| & =\left\|\sum_{j} s_{j}\left\langle u_{j}, u_{j_{0}}\right\rangle v_{j}\right\|^{2} \\
& =\left\|s_{j_{0}} v_{j_{0}}\right\|=s_{j_{0}} .
\end{aligned}
$$

Therefore

$$
\|K\|=\sup _{\|f\|=1}\|K f\| \geq\left\|K u_{j_{0}}\right\|=s_{j_{0}}=\max _{j}\left\{s_{j}\right\}
$$

