

OKAN ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ

24.05.2012MAT 462 – Fonksiyonel Analiz II – Yarıyıl Sonu Sınavı Çözümleri N. Course

Question 1 (Weak Convergence).

(a) [5 pts] Let X be a Banach space. Give the definition of weak convergence in X [i.e. $x_n \rightarrow x$ for $x_n \in X$.].

We say that x_n converges weakly to x, and write $x_n \rightharpoonup x$, iff $l(x_n) \rightarrow l(x)$ for all $l \in X^*$.

Consider the Banach space $\ell^p(\mathbb{N})$ where

$$\ell^{p}(\mathbb{N}) := \left\{ a = (a_{j})_{j=1}^{\infty} \subseteq \mathbb{C} : \|a\|_{p} := \left(\sum_{j=1}^{\infty} |a_{j}|^{p}\right)^{\frac{1}{p}} < \infty \right\}$$

for $1 \leq p < \infty$, and

$$\ell^{\infty}(\mathbb{N}) := \Big\{ a = (a_j)_{j=1}^{\infty} \subseteq \mathbb{C} : \|a\|_{\infty} := \sup_j |a_j| < \infty \Big\}.$$

Define

$$\delta_j^n = \begin{cases} 1 & \text{if } n = j \\ 0 & \text{if } n \neq j. \end{cases}$$

(b) [6 pts] Show that $\delta^n \in \ell^p(\mathbb{N})$ for all $n \in \mathbb{N}$ and for all $1 \leq p \leq \infty$.

$$\|\delta^n\|_{\infty} = \sup_{i} \left| d_j^n \right| = |\delta_n^n| = 1 < \infty.$$

So $\delta^n \in \ell^{\infty}(\mathbb{N})$ for all n. Let $1 \leq p < \infty$. Then

$$|\delta^n||_p^p = \sum_{j=1}^\infty |\delta_j^n|^p = ||\delta_n^n|| = 1 < \infty.$$

So $\delta^n \in \ell^p(\mathbb{N})$ for all n.

(c) [7 pts] Let $1 . Show that <math>\delta^n \rightharpoonup 0$.

Let
$$l \in \ell^p(\mathbb{N})^*$$
. Then $\exists y \in \ell^q(\mathbb{N}) \ (\frac{1}{p} + \frac{1}{q} = 1)$ such that
 $l(x) = \sum_{j=1}^{\infty} y_j x_j$
for all $x \in \ell^p(\mathbb{N})$.
So
 $|l(\delta^n)| = \left|\sum_{j=1}^{\infty} y_j \delta_j^n\right| = |y_n| \to 0$
as $n \to \infty$ since $y \in \ell^q(\mathbb{N})$.

Therefore $\delta \rightarrow 0$ as $n \rightarrow \infty$.

(d) [7 pts] Show that δ^n is not weakly convergent in $\ell^1(\mathbb{N})$.

Consider first the functional $l \in \ell^1(\mathbb{N})^*$ defined by $l(x) = x_1$. Then $l(\delta^n) = 0$ for all $n \ge 2$. So clearly $l(\delta^n) \to 0 = l(0)$. Therefore, if δ^n is weakly convergent in $\ell^1(\mathbb{N})$, then $\delta^n \to 0$. Next consider $\tilde{l} \in \ell^1(\mathbb{N})^*$ defined by $\tilde{l}(x) = x_1 + x_2 + x_3 + x_4 + \ldots$ Then $\tilde{l}(\delta^n) = 1$ for all $n \in \mathbb{N}$, so $\tilde{l}(\delta^n) \neq 0$ as $n \to \infty$. Therefore δ^n is not weakly convergent in $\ell^1(\mathbb{N})$.

Question 2 (Dual Spaces). Let X be a normed vector space.

(a) [4 pts] Give the definition of the *dual space* of X.

The dual space of X is $X^* = \mathcal{B}(X, \mathbb{C})$ [or $\mathcal{B}(X, \mathbb{R})$ if X is a real vector space].

(b) [4 pts] Let $x_0 \in X$ and $Y \subseteq X$. Give the definition of

 $\operatorname{dist}(x_0, Y).$

$$dist(x_0, Y) = \inf_{y \in Y} ||x_0 - y||_X$$

Corollary 12. Let X be a normed vector space and let $Y \subseteq X$ be a subspace. Let $x_0 \in X \setminus \overline{Y}$. Then $\exists l \in X^*$ such that (i) $l(y) = 0 \quad \forall y \in Y$; (ii) $l(x_0) = \operatorname{dist}(x_0, Y)$; and (iii) ||l|| = 1.

(c) [17 pts] Let X be a normed vector space and let $Y \subseteq X$ be a subspace. Define

 $S := \{ f \in X^* : f(y) = 0 \ \forall y \in Y \} \subseteq X^*.$

Use Corollary 4.12 to prove that

$$x_0 \in \overline{Y} \quad \iff \quad l(x_0) = 0 \quad \forall l \in S.$$

" \implies " Let $x_0 \in \overline{Y}$. Then \exists a sequence $(x_n) \subseteq Y$ such that $x_n \to x_0$. Let $l \in S$. Then $l(x_n) = 0 \forall n$. It follows by continuity that $l(x_0) = 0$ also. 8

"—"

Now suppose that $x_0 \notin \overline{Y}$. By Corollary 4.12, $\exists l \in X^*$ such that $l(y) = 0 \forall y \in Y$ (i.e. $l \in S$) and $l(x_0) = \text{dist}(x_0, Y) > 0$. Therefore $\exists l \in S$ such that $l(x_0) \neq 0$, and we are finished. 9

Question 3 (Weak and Strong Convergence of Operators). Consider the Hilbert space $\ell^2(\mathbb{N}) = \{a = (a_j)_{j=1}^{\infty} \subseteq \mathbb{C} : \|a\|_2 < \infty\}$ with the inner product $\langle x, y \rangle_2 = \sum_{j=1}^{\infty} \overline{x_j} y_j$.

Define two sequences of (bounded linear) operators $S_n: \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ and $S_n^*: \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ by

$$S_n(x_1, x_2, x_3, x_4, x_5, x_6, \ldots) = (x_{n+1}, x_{n+2}, x_{n+3}, x_{n+4}, \ldots)$$

and

$$S_n^*(x_1, x_2, x_3, x_4, x_5, x_6, \ldots) = (\underbrace{0, 0, \ldots, 0}_{n \text{ terms}}, x_1, x_2, x_3, x_4, \ldots)$$

In other words, S_n shifts every term, n places to the left; and S_n^* shifts every term, n places to the right.

(a) [5 pts] Show that $||S_n|| = 1, \forall n \in \mathbb{N}.$

First $||S_n x||_2 = (\sum_{j=1}^{\infty} |(S_n x)_j|^2)^{\frac{1}{2}} = (\sum_{j=n+1}^{\infty} |x_j|^2)^{\frac{1}{2}} \le (\sum_{j=1}^{\infty} |x_j|^2)^{\frac{1}{2}} = ||x||_2$ for all x. So $||S_n|| \le 1$. Moreover, $||\delta^m||_2 = 1$ for all $m \in \mathbb{N}$, and $||S_n \delta^{n+1}||_2 = ||\delta^1||_2 = 1 = ||\delta^{n+1}||_2$. Therefore $||S_n|| \ge 1$.

(b) [5 pts] Show that $||S_n^*|| = 1, \forall n \in \mathbb{N}.$

$$\begin{split} \|S_n^*x\|_2 &= (\sum_{j=1}^{\infty} |(S_n^*x)_j|^2)^{\frac{1}{2}} = (\sum_{j=n+1}^{\infty} |(S_n^*x)_j|^2)^{\frac{1}{2}} = (\sum_{j=1}^{\infty} |x_j|^2)^{\frac{1}{2}} = \|x\|_2 \text{ for all } x. \end{split}$$

Therefore $\|S_n^*\| = 1.$

(c) [5 pts] Show that S_n^* is the adjoint of S_n . [HINT: In other words, show that $\langle x, S_n^* y \rangle_2 = \langle S_n x, y \rangle_2$ for all $x, y \in \ell^2(\mathbb{N})$.]

$$\langle x, S_n^* y \rangle = \sum_{j=1}^{\infty} \overline{x_j} (S_n^* y)_j = \sum_{j=n+1}^{\infty} \overline{x_j} y_{j-n} = \sum_{j=1}^{\infty} \overline{x_{n+j}} y_j = \sum_{j=1}^{\infty} \overline{(S_n x)_j} y_j = \langle S_n x, y \rangle$$

(d) [5 pts] Show that $S_n \neq 0$ as $n \rightarrow \infty$.

Since $||S_n|| = 1$ for all *n*, it follows that $||S_n - 0|| \neq 0$. So $S_n \neq 0$.

(e) [5 pts] Show that s- $\lim_{n\to\infty} S_n = 0$.

Let
$$x \in \ell^2(\mathbb{N})$$
. Then $||x||_2 < \infty$. So $\sum_{j=1}^n |x_j|^2 \to \sum_{j=1}^\infty |x_j|^2$ as $n \to \infty$. Therefore
 $||S_n x||_2 = (\sum_{j=1}^\infty |(S_n x)_j|^2)^{\frac{1}{2}} = (\sum_{j=n+1}^\infty |x_j|^2)^{\frac{1}{2}} \to 0$
as $n \to \infty$. Hence $S_n x \to 0$ for all x , and thus s- $\lim_{n\to\infty} S_n = 0$.

Question 4 (Closed Operators). Let X and Y be Banach spaces.

(a) [4 pts] Give the definition of the graph of an operator $A: \mathfrak{D}(A) \subseteq X \to Y$.

$$\Gamma(A) = \{(x, Ax) : x \in \mathfrak{D}(A)\}$$

(b) [4 pts] Give the definition of a *closed operator*.

An operator is called closed iff its graph is a closed set.

(c) [7 pts] Now suppose that $A: X \to Y$ is a bounded operator. Show that A is a closed operator. [HINT: Start by letting (x_n, Ax_n) be any Cauchy sequence in $\Gamma(A)$.]

Let (x_n, Ax_n) be a Cauchy sequence in $\Gamma(A) \subseteq X \oplus Y$. Then x_n is a Cauchy sequence in the Banach space X. So $x_n \to x \in X$. Now, A is bounded 1, so A is continuous 1. Therefore $x_n \to x \implies Ax_n \to Ax$. So $(x_n, Ax_n) \to (x, Ax) \in \Gamma(A)$. So $\Gamma(A)$ is closed.

Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be Banach space. Let $A : \mathfrak{D}(A) \subseteq X \to Y$ be an operator. We can define a new norm, called the *graph norm associated with* A, by

$$\|x\|_A = \|x\|_X + \|Ax\|_Y$$

for all $x \in \mathfrak{D}(A)$.

(d) [10 pts] Show that $A : (\mathfrak{D}(A), \|\cdot\|_A) \to (Y, \|\cdot\|_Y)$ is bounded.

Let $x \in \mathfrak{D}(A)$. Then

$$\|Ax\|_{Y} \le \|x\|_{X} + \|Ax\|_{Y} = \|x\|_{A}.$$

Therefore $\|A\| = \sup_{\|x\|_{A}=1} \|Ax\|_{Y} \le 1 < \infty$. Therefore A is bounded.

Question 5 (Compact Operators). Let X be a Hilbert space.

(a) [5 pts] Give the definition of a *compact operator*.

An operator $A: X \to Y$ is called compact iff, $(f_n) \subseteq X$ bounded $\implies (Af_n) \subseteq Y$ has a convergent subsequence.

Let $K \in \mathcal{K}(X)$ be compact. Let s_j be the singular values of K and let $\{u_j\}$ be the corresponding orthonormal eigenvectors of K^*K . Then

$$K = \sum_{j} s_j \langle u_j, \cdot \rangle v_j$$

where

$$v_j = \frac{1}{s_j} K u_j$$

by Theorem 5.1.

(b) [10 pts] Show that $||K|| \le \max_j \{s_j\}.$

$$\begin{split} \|Kf\|^2 &= \left\|\sum_j s_j \langle u_j, f \rangle v_j \right\|^2 \\ &= \sum_j \|s_j \langle u_j, f \rangle v_j\|^2 \quad (\text{since the } v_j \text{ are orthogonal}) \\ &= \sum_j |s_j|^2 |\langle u_j, f \rangle|^2 \\ &\leq \max_j \{s_j\} \sum_j |\langle u_j, f \rangle|^2 \quad (\text{since the } s_j \text{ are real and positive}) \\ &= \max_j \{s_j\} \|f\|^2 \,. \end{split}$$

Therefore $\|K\| \leq \max_j \{s_j\}.$

(c) [10 pts] Show that $||K|| \ge \max_j \{s_j\}.$

Finally, choose j_0 such that $s_{j_0} = \max_j \{s_j\}$. Then

$$|Ku_{j_0}|| = \left\|\sum_{j} s_j \langle u_j, u_{j_0} \rangle v_j\right\|^2 \\= ||s_{j_0}v_{j_0}|| = s_{j_0}.$$

Therefore

$$||K|| = \sup_{||f||=1} ||Kf|| \ge ||Ku_{j_0}|| = s_{j_0} = \max_j \{s_j\}.$$