Question 1 (Fredholm Theory). Let X be a Hilbert space. Let $K: X \rightarrow X$ be a compact operator (i.e. $K \in \mathcal{K}(X))$. Suppose that $\operatorname{Ker}(1-K)=\{0\}$.
(a) [10p] Suppose that $\operatorname{Ran}(1-K) \neq X$. Define $X_{1}:=\operatorname{Ran}(1-K)=(1-K) X \varsubsetneqq X$ and $X_{2}:=(1-K) X_{1} \subseteq X_{1}$. Show that $X_{1} \neq X_{2}$.
[HINT: Use proof by contradiction. Start with $X_{1}=X_{2}, x \in X_{1}^{\perp}, x \neq 0$ and $y:=(1-K) x$. Show that $\exists z \in X_{1}$ such that $(1-K) z=y$. Then prove that this contradicts $\operatorname{Ker}(1-K)=\{0\}$.]
Proof by contradiction: Suppose that $X_{1}=X_{2}$.
Let $x \in X_{1}^{\perp}$ such that $x \neq 0$ (this is possible since we know that $X_{1} \neq X \boxed{1}$). Define $y=(1-K) x$.

Then $y \in \operatorname{Ran}(1-K)=X_{1}=X_{2}=(1-K) X_{1} 2$. So $\exists z \in X_{1}$ such that $y=(1-K) z$ 2. But then $(1-K) x=y=(1-K) z$ which implies that $(1-K)(x-z)=0$. So $x-z \in$ $\operatorname{Ker}(1-K) 2$. Given that $x \in X_{1}^{\perp}, z \in X_{1}$ and $x \neq 0$, we know that $x-z \neq 02$. However $\operatorname{Ker}(1-K)=\{0\}$. Contradiction. 1

Still assuming that $\operatorname{Ker}(1-K)=\{0\}$ and $\operatorname{Ran}(1-K) \neq X$, by repeating this idea, we can define

$$
\begin{aligned}
X_{1} & :=(1-K) X \varsubsetneqq X \\
X_{2} & :=(1-K) X_{1}=(1-K)^{2} X \varsubsetneqq X_{1} \\
X_{3} & :=(1-K) X_{2}=(1-K)^{3} X \varsubsetneqq X_{2} \\
X_{4} & :=(1-K) X_{3}=(1-K)^{4} X \varsubsetneqq X_{3} \\
X_{5} & :=(1-K) X_{4}=(1-K)^{5} X \varsubsetneqq X_{4} \\
& \vdots \\
X_{j} & :=(1-K) X_{j-1}=(1-K)^{j} X \varsubsetneqq X_{j-1}
\end{aligned}
$$

which gives us a sequence of subspaces $X \supsetneqq X_{1} \supsetneqq X_{2} \supsetneqq X_{3} \supsetneqq X_{4} \varsubsetneqq X_{5} \supsetneqq \ldots$
For each j, choose $f_{j} \in X_{j} \cap X_{j+1}^{\perp}$ such that $\left\|f_{j}\right\|=1$.
(b) [5p] Suppose $k>j$. Show that

$$
f_{k}+(1-K)\left(f_{j}-f_{k}\right) \in X_{j+1}
$$

Clearly $(1-K) f_{j} \in(1-K) X_{j}=X_{j+1} \boxed{1}$. Moreover $f_{k} \in X_{k} \subseteq X_{j+1} \boxed{1}$ and $(1-K) f_{k} \in$ $(1-K) X_{k} \varsubsetneqq X_{k} \subseteq X_{j+1}$ 2. Therefore $f_{k}+(1-K)\left(f_{j}-f_{k}\right) \in X_{j+1} \cdot 1$
(c) [5p] Show that

$$
k>j \quad \Longrightarrow \quad\left\|K f_{j}-K f_{k}\right\|^{2} \geq 1
$$

[HINT: Remember: If $\langle a, b\rangle=0$, then $\|a+b\|^{2}=\|a\|^{2}+\|b\|^{2}$ by Pythogoras. $K f_{j}=f_{j}-(1-K) f_{j}$. Use part (b) and the fact that $\left\|f_{j}\right\|^{2}=1$.]

Suppose that $k>j$. Then

$$
\left\|K f_{j}-K f_{k}\right\|^{2}=\left\|f_{j}-f_{k}-(1-K)\left(f_{j}-f_{k}\right)\right\|^{2}=\left\|f_{j}\right\|^{2}+\left\|f_{k}+(1-K)\left(f_{j}-f_{k}\right)\right\|^{2} \geq 1
$$

by Pythogoras, since $f_{j} \in X_{j+1}^{\perp}$ and $f_{k}+(1-K)\left(f_{j}-f_{k}\right) \in X_{j+1}$.
(d) [5p] Now prove that

$$
\operatorname{Ker}(1-K)=\{0\} \quad \Longrightarrow \quad \operatorname{Ran}(1-K)=X
$$

[HINT: Use proof by contradiction and parts (a)-(c). Remember that K is compact - what do we know about the sequence $\left(f_{j}\right)$?]

Proof by contradiction: Suppose that $\operatorname{Ker}(1-K)=\{0\}$ and $\operatorname{Ran}(1-K) \neq X$.
Let $\left(f_{j}\right)$ be the bounded sequence defined above. Because K is compact, we know that $\left(K f_{j}\right)$ has a convergence subsequence. But this contradicts part (c).

Question 2 (Weak and Strong Convergence of Operators). Let X be a Banach space. Let $A_{n}, B_{n} \in$ $\mathcal{B}(X)$ be 2 sequences of bounded operators
(a) [5p] Give the definition of " B_{n} converges strongly to B " [i.e. s- $\lim _{n \rightarrow \infty} B_{n}=B$].

A sequence of operators $\left(B_{n}\right)$ is said to converge strongly to B iff, $B_{n} x \rightarrow B x$ for all $x \in \mathfrak{D}(B) \subseteq \mathfrak{D}\left(B_{n}\right)$.
(b) [5p] Give the definition of " A_{n} converges weakly to A " $\left[\mathrm{i} . \mathrm{e} . \mathrm{w}-\lim _{n \rightarrow \infty} A_{n}=A\right]$.

A sequence of operators $\left(A_{n}\right)$ is said to converge weakly to A iff, $A_{n} x \rightharpoonup A x$ for all $x \in$ $\mathfrak{D}(A) \subseteq \mathfrak{D}\left(A_{n}\right)$.
(c) $[14 \mathrm{p}]$ Show that

$$
\underset{n \rightarrow \infty}{\mathrm{w}-\lim _{n}} A_{n}=A \text { and } \underset{n \rightarrow \infty}{\mathrm{~s}-\lim _{n}} B_{n}=B \quad \Longrightarrow \quad \underset{n \rightarrow \infty}{\mathrm{w}-\lim _{n \rightarrow \infty}} A_{n} B_{n}=A B
$$

Let $x \in \mathfrak{D}(A) \subseteq \mathfrak{D}\left(A_{n}\right)$ and define $y:=B x$. Let $l \in X^{*}$.
Since $\mathrm{w}-\lim _{n \rightarrow \infty} A_{n}=A$, we know that $A_{n} y \rightharpoonup A y$, which tells us that $l\left(A_{n} y\right) \rightarrow l(A y)$. Moreover, since s-lim ${ }_{n \rightarrow \infty} B_{n}=B$, we know that $B_{n} x \rightarrow B x$. Then

$$
\begin{aligned}
\left\|l\left(\left(A_{n} B_{n}-A B\right) x\right)\right\| & =\left\|l A_{n} B_{n} x-l A B x\right\| \\
& =\left\|l A_{n} B_{n} x-l A_{n} B x+l A_{n} B x-l A B x\right\| \\
& \leq\left\|l A_{n} B_{n} x-l A_{n} B x\right\|+\left\|l A_{n} B x-l A B x\right\| \\
& \leq\|l\|\|A\|\left\|B_{n} x-B x\right\|+\left\|l\left(A_{n} y-A y\right)\right\| \\
& \rightarrow 0 .
\end{aligned}
$$

Therefore $A_{n} B_{n} x \rightharpoonup A B x$ and hence $\mathrm{w}-\lim _{n \rightarrow \infty} A_{n} B_{n}=A B$.
(d) [1p] Is the following statement true or false?

$$
\text { "w-lim } \lim _{n \rightarrow \infty} A_{n}=A \text { and } \underset{n \rightarrow \infty}{\mathrm{~s}-\lim _{n}} B_{n}=B \quad \Longrightarrow \quad \underset{\substack{\mathrm{w}-\lim _{n \rightarrow \infty} \\ \\ B_{n}}}{ } A_{n}=B A . "
$$

Question 3 (Dual Space). Let $1<p<\infty$ and $\frac{1}{p}+\frac{1}{q}=1$. Consider the Banach spaces $\ell^{p}(\mathbb{N})$, $\ell^{q}(\mathbb{N})$ and $\ell^{p}(\mathbb{N})^{*}$, where

$$
\ell^{p}(\mathbb{N}):=\left\{a=\left(a_{j}\right)_{j=1}^{\infty} \subseteq \mathbb{C}:\|a\|_{p}:=\left(\sum_{j=1}^{\infty}\left|a_{j}\right|^{p}\right)^{\frac{1}{p}}<\infty\right\} .
$$

Let $b=\left(b_{j}\right)_{j=1}^{\infty} \in \ell^{q}(\mathbb{N})$. Define

$$
a_{j}= \begin{cases}\frac{\left|b_{j}\right|^{q}}{b_{j}} & \text { if } b_{j} \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

(a) [5p] Show that $a=\left(a_{j}\right)_{j=1}^{\infty} \in \ell^{p}(\mathbb{N})$.
[HINT: $\frac{1}{p}+\frac{1}{q}=1 \Longleftrightarrow \frac{q+p}{p q}=1 \Longleftrightarrow \ldots$. Show first that $\|a\|_{p}^{p}=\|b\|_{q}^{q}$.]
Since $\frac{1}{p}+\frac{1}{q}=1$, it follows that $q=p(q-1)$. Then $\|a\|_{p}^{p}=\sum\left|a_{j}\right|^{p}=\sum\left|\frac{\left|b_{j}\right|^{q}}{b_{j}}\right|^{p}=$ $\sum\left|b_{j}\right|^{(q-1) p}=\sum\left|b_{j}\right|^{q}=\|b\|_{q}^{q}<\infty$ because $b \in \ell^{q}(\mathbb{N})$. So $a \in \ell^{p}(\mathbb{N})$.
(b) [5p] Show that $\|b\|_{q}^{q-1}=\|a\|_{p}$.

Note first that $q-1=\frac{q}{p}$. So $\|b\|_{q}^{q-1}=\|b\|_{q}^{\frac{q}{p}}=\left(\|b\|_{q}^{q}\right)^{\frac{1}{p}}=\left(\|a\|_{p}^{p}\right)^{\frac{1}{p}}=\|a\|_{p}$ by the proof of part (a).

For each $y \in \ell^{q}(\mathbb{N})$, define $l_{y}: \ell^{p}(\mathbb{N}) \rightarrow \mathbb{C}$ by

$$
l_{y}(x)=\sum_{j=1}^{\infty} y_{j} x_{j} .
$$

(c) [5p] Use the Hölder Inequality to show that $\left\|l_{y}\right\| \leq\|y\|_{q}$ for all $y \in \ell^{q}(\mathbb{N})$.

Let $y \in \ell^{q}(\mathbb{N})$. By the Hölder Inequality, $\left|l_{y}(x)\right|=\left|\sum y_{j} x_{j}\right| \leq \sum\left|y_{j} x_{j}\right|=\|y x\|_{1} \leq\|y\|_{q}\|x\|_{p}$ for all $x \in \ell^{p}(\mathbb{N})$. Therefore $\left\|l_{y}\right\| \leq\|y\|_{q}$.
(d) [8p] Show that $\left\|l_{y}\right\|=\|y\|_{q}$ for all $y \in \ell^{q}(\mathbb{N})$.
[HINT: Choose $x \in \ell^{p}(\mathbb{N})$ such that $x_{j} y_{j}=\left|y_{j}\right|^{q}$. Why can we always do this? Use part (b).]
Let $y \in \ell^{q}(\mathbb{N})$. Choose $x \in \ell^{p}(\mathbb{N})$ such that $x_{n} y_{n}=\left|y_{n}\right|^{q}$. We can always do this by part (a). Then $\left|l_{y}(x)\right|=\left|\sum y_{j} x_{j}\right|=\sum\left|y_{j}\right|^{q}=\|y\|_{q}^{q}=\|y\|_{q}\|y\|_{q}^{q-1}=\|y\|_{q}\|x\|_{p}$ by part (b). It follows that $\left\|l_{y}\right\|=\sup _{\|x\|_{p}=1}\left|l_{y}(x)\right|=\|y\|_{q}$.
(e) $[2 \mathrm{p}]$ Show that $l_{y} \in \ell^{p}(\mathbb{N})^{*}$ for all $y \in \ell^{q}(\mathbb{N})$.

We showed in part (c) that l_{y} is bounded. It is easy to show that l_{y} is linear. Therefore $l_{y} \in \ell^{p}(\mathbb{N})^{*}$ for all $y \in \ell^{q}(\mathbb{N})$.

Question 4 (Closed Operators). Let X and Y be a Banach spaces.
(a) [4p] Give the definition of the graph of an operator $A: \mathfrak{D}(A) \subseteq X \rightarrow Y$.

$$
\Gamma(A)=\{(x, A x): x \in \mathfrak{D}(A)\} \subseteq X \oplus Y
$$

(b) [4p] Give the definition of a closed operator.

We say that an operator $A: \mathfrak{D}(A) \subseteq X \rightarrow Y$ is closed iff, its graph is a closed subset of $X \oplus Y$.
(c) [8p] Now let $A: X \rightarrow Y$ be an operator. Suppose that A satisfies the following property:

- Let $\left(x_{n}\right)$ be any sequence in X. If $x_{n} \rightarrow x$ and $A x_{n} \rightarrow y$, then $A x=y$.

Show that A is a closed operator.
[HINT: Start by letting $\left(x_{n}, A x_{n}\right)$ be any Cauchy sequence in $\Gamma(A)$.]
Let $\left(x_{n}, A x_{n}\right)$ be a Cauchy sequence in $\Gamma(A)$. Then x_{n} is a Cauchy sequence in X and $A x_{n}$ is a Cauchy sequence in Y. So $x_{n} \rightarrow x \in X$ and $A x_{n} \rightarrow y \in Y$.

By the above property, $y=A x$. So $\left(x_{n}, A x_{n}\right) \rightarrow(x, A x) \in \Gamma(A)$. Hence $\Gamma(A)$ is a closed set. Therefore A is a closed operator.
(d) $[8 \mathrm{p}]$ Now let X be a Hilbert space. Let $A: X \rightarrow X$ be a symmetrical operator [ie. $\langle x, A y\rangle=$ $\langle A x, y\rangle \forall x, y \in X]$. Let $\left(x_{n}\right)$ be a sequence such that $x_{n} \rightarrow x \in X$ and $A x_{n} \rightarrow y \in X$.
Show that $A x=y$.
First,

$$
\begin{aligned}
\langle z, y\rangle & =\left\langle z, \lim _{n \rightarrow \infty} A x_{n}\right\rangle \\
& =\lim _{n \rightarrow \infty}\left\langle z, A x_{n}\right\rangle \\
& =\lim _{n \rightarrow \infty}\left\langle A z, x_{n}\right\rangle \\
& =\left\langle A z, \lim _{n \rightarrow \infty} x_{n}\right\rangle \\
& =\langle A z, x\rangle=\langle z, A x\rangle
\end{aligned}
$$

for all $z \in X$. Therefore $A x=y$.
(e) $[1 \mathrm{p}]$ Is the following statement true or false?
"Every symmetrical operator, defined on a Hilbert space, is a closed operator."

$$
\checkmark \checkmark \text { true }
$$

\square false
Question 5 (Weak Convergence).
(a) [fp] Let X be a Banach space. Give the definition of weak convergence in X [ie. $x_{n} \rightharpoonup x$ for $x_{n} \in X$.].

We say that x_{n} converges weakly to x, and write $x_{n} \rightharpoonup x$, iff $l\left(x_{n}\right) \rightarrow l(x)$ for all $l \in X^{*}$.

Now let X be a Hilbert space. Let $\left\{u_{j}\right\}_{j=1}^{\infty} \subseteq X$ be a countable, infinite, orthonormal set.
(b) [10p] Show that

$$
\left\langle g, u_{n}\right\rangle \rightarrow 0
$$

as $n \rightarrow \infty$, for all $g \in X$.
Let $g \in X$. First recall Bessel's Inequality: $\sum_{j=1}^{n}\left|\left\langle f, u_{j}\right\rangle\right|^{2} \leq\|f\|$. It follows from Bessel's Inequality that $\sum_{j=1}^{\infty}\left|\left\langle g, u_{j}\right\rangle\right|^{2}$ is convergent, and hence that

$$
\left\langle g, u_{n}\right\rangle \rightarrow 0
$$

as $n \rightarrow \infty$, by the Divergence Theorem from $2^{\text {nd }}$-year Calculus.
(c) [fp] Show that $u_{n} \rightharpoonup 0$ as $n \rightarrow \infty$.

Follows immediately from the Reisz Lemma and part (b).
(d) [5p] Show that $u_{n} \nrightarrow 0$ as $n \rightarrow \infty$.

Since the u_{j} are orthonormal, we must have $\left\|u_{j}\right\|=1$ for all j. Therefore $u_{j} \nrightarrow 0$ as $n \rightarrow \infty$.

