

23.05.2013 MAT 462 – Fonksiyonel Analiz II – Final Sınavın Çözümleri N. Course

Question 1 (Fredholm Theory). Let X be a Hilbert space. Let $K : X \to X$ be a compact operator (i.e. $K \in \mathcal{K}(X)$). Suppose that $\text{Ker}(1 - K) = \{0\}$.

(a) [10p] Suppose that $\operatorname{Ran}(1-K) \neq X$. Define $X_1 := \operatorname{Ran}(1-K) = (1-K)X \subsetneq X$ and $X_2 := (1-K)X_1 \subseteq X_1$. Show that $X_1 \neq X_2$.

[HINT: Use proof by contradiction. Start with $X_1 = X_2$, $x \in X_1^{\perp}$, $x \neq 0$ and y := (1 - K)x. Show that $\exists z \in X_1$ such that (1 - K)z = y. Then prove that this contradicts $\text{Ker}(1 - K) = \{0\}$.]

Proof by contradiction: Suppose that $X_1 = X_2$.

Let $x \in X_1^{\perp}$ such that $x \neq 0$ (this is possible since we know that $X_1 \neq X$ 1). Define y = (1 - K)x.

Then $y \in \operatorname{Ran}(1-K) = X_1 = X_2 = (1-K)X_1$ 2. So $\exists z \in X_1$ such that y = (1-K)z2. But then (1-K)x = y = (1-K)z which implies that (1-K)(x-z) = 0. So $x-z \in \operatorname{Ker}(1-K)$ 2. Given that $x \in X_1^{\perp}$, $z \in X_1$ and $x \neq 0$, we know that $x-z \neq 0$ 2. However $\operatorname{Ker}(1-K) = \{0\}$. Contradiction. 1

Still assuming that $\text{Ker}(1-K) = \{0\}$ and $\text{Ran}(1-K) \neq X$, by repeating this idea, we can define

$$X_{1} := (1 - K)X \subsetneqq X$$

$$X_{2} := (1 - K)X_{1} = (1 - K)^{2}X \subsetneqq X_{1}$$

$$X_{3} := (1 - K)X_{2} = (1 - K)^{3}X \subsetneqq X_{2}$$

$$X_{4} := (1 - K)X_{3} = (1 - K)^{4}X \subsetneqq X_{3}$$

$$X_{5} := (1 - K)X_{4} = (1 - K)^{5}X \gneqq X_{4}$$

$$\vdots$$

$$X_{j} := (1 - K)X_{j-1} = (1 - K)^{j}X \gneqq X_{j-1}$$

$$\vdots$$

which gives us a sequence of subspaces $X \supseteq X_1 \supseteq X_2 \supseteq X_3 \supseteq X_4 \subseteq X_5 \supseteq \dots$

For each j, choose $f_j \in X_j \cap X_{j+1}^{\perp}$ such that $||f_j|| = 1$.

(b) [5p] Suppose k > j. Show that

$$f_k + (1 - K)(f_j - f_k) \in X_{j+1}.$$

Clearly $(1-K)f_j \in (1-K)X_j = X_{j+1}$ 1. Moreover $f_k \in X_k \subseteq X_{j+1}$ 1 and $(1-K)f_k \in (1-K)X_k \subsetneq X_k \subseteq X_{j+1}$ 2. Therefore $f_k + (1-K)(f_j - f_k) \in X_{j+1}$. 1

(c) [5p] Show that

$$k > j \qquad \Longrightarrow \qquad \|Kf_j - Kf_k\|^2 \ge 1.$$

[HINT: Remember: If $\langle a, b \rangle = 0$, then $||a + b||^2 = ||a||^2 + ||b||^2$ by Pythogoras. $Kf_j = f_j - (1 - K)f_j$. Use part (b) and the fact that $||f_j||^2 = 1$.]

Suppose that k > j. Then $\|Kf_j - Kf_k\|^2 = \|f_j - f_k - (1 - K)(f_j - f_k)\|^2 = \|f_j\|^2 + \|f_k + (1 - K)(f_j - f_k)\|^2 \ge 1$ by Pythogoras, since $f_j \in X_{j+1}^{\perp}$ and $f_k + (1 - K)(f_j - f_k) \in X_{j+1}$.

(d) [5p] Now prove that

$$\operatorname{Ker}(1-K) = \{0\} \implies \operatorname{Ran}(1-K) = X.$$

[HINT: Use proof by contradiction and parts (a)-(c). Remember that K is compact – what do we know about the sequence (f_j) ?]

Proof by contradiction: Suppose that $\text{Ker}(1-K) = \{0\}$ and $\text{Ran}(1-K) \neq X$.

Let (f_j) be the bounded sequence defined above. Because K is compact, we know that (Kf_j) has a convergence subsequence. But this contradicts part (c).

Question 2 (Weak and Strong Convergence of Operators). Let X be a Banach space. Let $A_n, B_n \in \mathcal{B}(X)$ be 2 sequences of bounded operators

(a) [5p] Give the definition of " B_n converges strongly to B" [i.e. s- $\lim_{n\to\infty} B_n = B$].

A sequence of operators (B_n) is said to converge strongly to B iff, $B_n x \to B x$ for all $x \in \mathfrak{D}(B) \subseteq \mathfrak{D}(B_n)$.

(b) [5p] Give the definition of " A_n converges weakly to A" [i.e. w-lim_{$n\to\infty$} $A_n = A$].

A sequence of operators (A_n) is said to converge weakly to A iff, $A_n x \rightharpoonup Ax$ for all $x \in \mathfrak{D}(A) \subseteq \mathfrak{D}(A_n)$.

(c) [14p] Show that

w-lim
$$A_n = A$$
 and s-lim $B_n = B$ \implies w-lim $A_n B_n = AB$.

Let $x \in \mathfrak{D}(A) \subseteq \mathfrak{D}(A_n)$ and define y := Bx. Let $l \in X^*$.

Since w-lim_{$n\to\infty$} $A_n = A$, we know that $A_n y \rightharpoonup Ay$, which tells us that $l(A_n y) \rightarrow l(Ay)$. Moreover, since s-lim_{$n\to\infty$} $B_n = B$, we know that $B_n x \rightarrow Bx$. Then

$$\begin{aligned} \|l((A_nB_n - AB)x)\| &= \|lA_nB_nx - lABx\| \\ &= \|lA_nB_nx - lA_nBx + lA_nBx - lABx\| \\ &\leq \|lA_nB_nx - lA_nBx\| + \|lA_nBx - lABx\| \\ &\leq \|l\| \|A\| \|B_nx - Bx\| + \|l(A_ny - Ay)\| \\ &\to 0. \end{aligned}$$

Therefore $A_n B_n x \rightarrow ABx$ and hence w-lim_{$n \rightarrow \infty$} $A_n B_n = AB$.

(d) [1p] Is the following statement true or false?

"w-lim
$$A_n = A$$
 and s-lim $B_n = B$ \implies w-lim $B_n A_n = BA$."
true \checkmark false

Question 3 (Dual Space). Let $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$. Consider the Banach spaces $\ell^p(\mathbb{N})$, $\ell^q(\mathbb{N})$ and $\ell^p(\mathbb{N})^*$, where

$$\ell^{p}(\mathbb{N}) := \Big\{ a = (a_{j})_{j=1}^{\infty} \subseteq \mathbb{C} : \|a\|_{p} := \Big(\sum_{j=1}^{\infty} |a_{j}|^{p}\Big)^{\frac{1}{p}} < \infty \Big\}.$$

Let $b = (b_j)_{j=1}^{\infty} \in \ell^q(\mathbb{N})$. Define

$$a_j = \begin{cases} \frac{|b_j|^q}{b_j} & \text{if } b_j \neq 0\\ 0 & \text{otherwise.} \end{cases}$$

(a) [5p] Show that $a = (a_j)_{j=1}^{\infty} \in \ell^p(\mathbb{N})$. [HINT: $\frac{1}{p} + \frac{1}{q} = 1 \iff \frac{q_j}{pq} = 1 \iff \dots$ Show first that $||a||_p^p = ||b||_q^q$.]

Since $\frac{1}{p} + \frac{1}{q} = 1$, it follows that q = p(q-1). Then $||a||_p^p = \sum |a_j|^p = \sum \left|\frac{|b_j|^q}{b_j}\right|^p = \sum |b_j|^{(q-1)p} = \sum |b_j|^q = ||b||_q^q < \infty$ because $b \in \ell^q(\mathbb{N})$. So $a \in \ell^p(\mathbb{N})$.

(b) [5p] Show that $||b||_q^{q-1} = ||a||_p$.

Note first that
$$q - 1 = \frac{q}{p}$$
. So $||b||_q^{q-1} = ||b||_q^{\frac{q}{p}} = (||b||_q^q)^{\frac{1}{p}} = (||a||_p^p)^{\frac{1}{p}} = ||a||_p$ by the proof of part (a).

For each $y \in \ell^q(\mathbb{N})$, define $l_y : \ell^p(\mathbb{N}) \to \mathbb{C}$ by

$$l_y(x) = \sum_{j=1}^{\infty} y_j x_j.$$

(c) [5p] Use the Hölder Inequality to show that $||l_y|| \le ||y||_q$ for all $y \in \ell^q(\mathbb{N})$.

Let $y \in \ell^q(\mathbb{N})$. By the Hölder Inequality, $|l_y(x)| = |\sum y_j x_j| \le \sum |y_j x_j| = ||yx||_1 \le ||y||_q ||x||_p$ for all $x \in \ell^p(\mathbb{N})$. Therefore $||l_y|| \le ||y||_q$.

(d) [8p] Show that $||l_y|| = ||y||_q$ for all $y \in \ell^q(\mathbb{N})$. [HINT: Choose $x \in \ell^p(\mathbb{N})$ such that $x_j y_j = |y_j|^q$. Why can we always do this? Use part (b).]

Let $y \in \ell^q(\mathbb{N})$. Choose $x \in \ell^p(\mathbb{N})$ such that $x_n y_n = |y_n|^q$. We can always do this by part (a). Then $|l_y(x)| = |\sum y_j x_j| = \sum |y_j|^q = ||y||_q^q = ||y||_q ||y||_q^{q-1} = ||y||_q ||x||_p$ by part (b). It follows that $||l_y|| = \sup_{||x||_p = 1} |l_y(x)| = ||y||_q$.

(e) [2p] Show that $l_y \in \ell^p(\mathbb{N})^*$ for all $y \in \ell^q(\mathbb{N})$.

We showed in part (c) that l_y is bounded. It is easy to show that l_y is linear. Therefore $l_y \in \ell^p(\mathbb{N})^*$ for all $y \in \ell^q(\mathbb{N})$.

Question 4 (Closed Operators). Let X and Y be a Banach spaces.

(a) [4p] Give the definition of the graph of an operator $A: \mathfrak{D}(A) \subseteq X \to Y$.

$$\Gamma(A) = \{ (x, Ax) : x \in \mathfrak{D}(A) \} \subseteq X \oplus Y.$$

(b) [4p] Give the definition of a *closed operator*.

We say that an operator $A : \mathfrak{D}(A) \subseteq X \to Y$ is closed iff, its graph is a closed subset of $X \oplus Y$.

- (c) [8p] Now let $A: X \to Y$ be an operator. Suppose that A satisfies the following property:
 - Let (x_n) be any sequence in X. If $x_n \to x$ and $Ax_n \to y$, then Ax = y.

Show that A is a closed operator. [HINT: Start by letting (x_n, Ax_n) be any Cauchy sequence in $\Gamma(A)$.]

Let (x_n, Ax_n) be a Cauchy sequence in $\Gamma(A)$. Then x_n is a Cauchy sequence in X and Ax_n is a Cauchy sequence in Y. So $x_n \to x \in X$ and $Ax_n \to y \in Y$.

By the above property, y = Ax. So $(x_n, Ax_n) \to (x, Ax) \in \Gamma(A)$. Hence $\Gamma(A)$ is a closed set. Therefore A is a closed operator.

(d) [8p] Now let X be a Hilbert space. Let $A : X \to X$ be a symmetrical operator [i.e. $\langle x, Ay \rangle = \langle Ax, y \rangle \ \forall x, y \in X$]. Let (x_n) be a sequence such that $x_n \to x \in X$ and $Ax_n \to y \in X$. Show that Ax = y.

First.

 $\langle z, y \rangle = \left\langle z, \lim_{n \to \infty} Ax_n \right\rangle$ $= \lim_{n \to \infty} \left\langle z, Ax_n \right\rangle$ $= \lim_{n \to \infty} \left\langle Az, x_n \right\rangle$ $= \left\langle Az, \lim_{n \to \infty} x_n \right\rangle$ $= \left\langle Az, x \right\rangle \qquad = \left\langle z, Ax \right\rangle$

```
for all z \in X. Therefore Ax = y.
```

(e) [1p] Is the following statement true or false?

"Every symmetrical operator, defined on a Hilbert space, is a closed operator."

✓ true false

Question 5 (Weak Convergence).

(a) [5p] Let X be a Banach space. Give the definition of weak convergence in X [i.e. $x_n \rightarrow x$ for $x_n \in X$.].

We say that x_n converges weakly to x, and write $x_n \rightharpoonup x$, iff $l(x_n) \rightarrow l(x)$ for all $l \in X^*$.

Now let X be a Hilbert space. Let $\{u_j\}_{j=1}^{\infty} \subseteq X$ be a countable, infinite, orthonormal set.

(b) [10p] Show that

$$\langle g, u_n \rangle \to 0$$

as $n \to \infty$, for all $g \in X$.

Let $g \in X$. First recall Bessel's Inequality: $\sum_{j=1}^{n} |\langle f, u_j \rangle|^2 \leq ||f||$. It follows from Bessel's Inequality that $\sum_{j=1}^{\infty} |\langle g, u_j \rangle|^2$ is convergent, and hence that

$$\langle g, u_n \rangle \to 0$$

as $n \to \infty$, by the Divergence Theorem from 2^{nd} -year Calculus.

(c) [5p] Show that $u_n \rightarrow 0$ as $n \rightarrow \infty$.

Follows immediately from the Reisz Lemma and part (b).

(d) [5p] Show that $u_n \not\to 0$ as $n \to \infty$.

Since the u_j are orthonormal, we must have $||u_j|| = 1$ for all j. Therefore $u_j \neq 0$ as $n \rightarrow \infty$.