

2013.04.02 MAT 462 – Fonksiyonel Analiz II – Ara Sınavın Çözumleri N. Course

Question 1 (Weak Convergence). Let X be a Banach space.

(a) [10p] Let (x_n) be a sequence in X. Give the definition of x_n converges weakly to x (i.e. $x_n \rightharpoonup x$ as $n \rightarrow \infty$).

We say that x_n converges weakly to x (and write $x_n \rightharpoonup x$ as $n \rightarrow \infty$) iff $l(x_n) \rightarrow l(x)$ as $n \rightarrow \infty$, for all $l \in X^*$.

(b) [20p] Show that the weak limit is unique (i.e. show that if $x_n \rightharpoonup x$ and $x_n \rightharpoonup \tilde{x}$, then $x = \tilde{x}$).

Suppose that $x_n \rightharpoonup x$ and $x_n \rightharpoonup \tilde{x}$. Then

$$l(\tilde{x} - x) = l(\tilde{x}) - l(x) = \lim_{n \to \infty} l(x_n) - \lim_{n \to \infty} l(x_n) = 0$$

for all $l \in X^*$. It follows that $\tilde{x} - x = 0$. Hence weak limits are unique.

(c) [20p] Suppose that $x_n \rightharpoonup x$. Let $A \in \mathcal{B}(X)$. Show that $Ax_n \rightharpoonup Ax$.

Since $x_n \rightharpoonup x$, we know that $\tilde{l}(x_n) \rightarrow \tilde{l}(x)$ for all $\tilde{l} \in X^*$.

Now let $l \in X^* = \mathcal{B}(X, \mathbb{C})$. We know that the composition of 2 bounded operators is bounded, so $l \circ A \in \mathcal{B}(X, \mathbb{C}) = X^*$.

Therefore $lAx_n \to lAx$ for all $l \in X^*$. If follows that $Ax_n \rightharpoonup Ax$.

Question 2 (Reflexive Spaces). Let X be a Banach space, with dual space X^* and double dual space X^{**} . Define the map $J: X \to X^{**}$ by

$$J(x)(l) = l(x)$$

for all $l \in X^*$.

(a) [15p] Show that $||J(x)||_{X^{**}} \le ||x||_X$ for all $x \in X$.

Since $|J(x)(l)| = |l(x)| \le ||l||_{X^*} ||x||_X$ for all $l \in X^*$, it follows that $||J(x)||_{X^{**}} \le ||x||_X$.

(b) [10p] Give the definition of a *reflexive* space.

The space X is called reflexive iff $J(X) = X^{**}$.

In class we proved that:

• X is reflexive $\implies X^*$ is reflexive;

and

• If X is reflexive, and $Y \subseteq X$ is a closed subspace, then Y is reflexive.

(c) [25p] Show that

 X^* is reflexive \implies X is reflexive.

[HINT: $X \cong J(X)$]

Suppose that X^* is reflexive. Then we know that X^{**} is reflexive. Since $J(X) \subseteq X^{**}$ is a closed subspace of X^{**} , it follows that J(X) is also reflexive. Finally, since J(X) is isomorphic to X we are finished.

Question 3 (The Hahn-Banach Theorem). First recall the real version of the Hahn-Banach Theorem:

The Hahn-Banach Theorem (Real version). Let X be a real vector space, let $Y \subseteq X$ be a subspace, and let $\phi : X \to \mathbb{R}$ be a convex function. Suppose that $l : Y \to \mathbb{R}$ is a linear functional which satisfies

$$l(y) \le \phi(y) \qquad \forall y \in Y.$$

Then \exists an extension $\overline{l}: X \to \mathbb{R}$ which satisfies

 $\bar{l}(x) \le \phi(x) \qquad \forall x \in X.$

Now let X be a complex vector space, let $Y \subseteq X$ be a subspace, and let $\phi : X \to \mathbb{R}$ be a convex function satisfying

$$\phi(\alpha x) \le \phi(x) \qquad \forall \, |\alpha| = 1.$$

Suppose that $l: Y \to \mathbb{R}$ is a linear functional which satisfies

$$|l(y)| \le \phi(y) \qquad \forall y \in Y.$$

(a) [10p] Let $l_r = \operatorname{Re}(l)$. Show that

$$l(x) = l_r(x) - il_r(ix).$$

$$l(x) = \operatorname{Re}(l(x)) + i \operatorname{Im}(l(x)) = \operatorname{Re}(l(x)) + i \operatorname{Re}(-il(x)) = l_r(x) - il_r(ix).$$

(b) [10p] Show that l_r has a real linear extension $\bar{l}_r: X \to \mathbb{R}$ satisfying $\bar{l}_r(x) \leq \phi(x) \ \forall x \in X$.

Follows immediately from the real version of the Hahn-Banach Theorem.

Define $\overline{l}(x) := \overline{l}_r(x) - i\overline{l}_r(ix)$.

(c) [10p] Show that \bar{l} is real linear. In other words, show that $\bar{l}(x+\lambda y) = \bar{l}(x) + \lambda \bar{l}(y)$ for all $x, y \in X$ and $\lambda \in \mathbb{R}$.

Follows since \bar{l}_r is real-linear.

(d) [10p] Show that \bar{l} is complex linear. In other words, show that $\bar{l}(x + \lambda y) = \bar{l}(x) + \lambda \bar{l}(y)$ for all $x, y \in X$ and $\lambda \in \mathbb{C}$. [HINT: First show that $\bar{l}(ix) = i\bar{l}(x)$.]

Since

$$\bar{l}(ix) = \bar{l}_r(ix) + i\bar{l}_r(x) = i\bar{l}(x),$$

this follows by part (c).

(e) [10p] Show that $|\bar{l}(x)| \leq \phi(x)$ for all $x \in X$. [HINT: Use $\alpha = \frac{\bar{l}(x)}{|\bar{l}(x)|}$ (where $\bar{a} + i\bar{b}$ means $a - i\bar{b}$), and $|\bar{l}(x)| = \alpha \bar{l}(x)$.]

Let $x \in X$. Defining α as in the hint, we see that $|\alpha| = 1$. Thus

$$\left|\bar{l}(x)\right| = \alpha \bar{l}(x) = \bar{l}(\alpha x) = \bar{l}_r(x) \le \phi(\alpha x) \le \phi(x).$$