

2014.05.29 MAT462 Fonksiyonel Analiz II – Final Sınavın Çözümleri N. Course

Soru 1 (Finite Rank Operators). Let X be a Hilbert space.

(a) [5p] Give the definition of a *finite rank operator* $K \in \mathcal{B}(X)$.

An operator $K \in \mathcal{B}(X)$ is called a *finite rank operator* iff $\operatorname{Ran}(K)$ is finite dimensional.

(b) [10p] Show that

 $A \in \mathcal{B}(X)$ is a finite rank operator $\implies A$ is compact.

[HINT: Use the Heine-Borel Theorem.]

Heine-Borel says that a subset of \mathbb{R}^n is compact if and only if it is closed and bounded.

Let f_n be a bounded sequence. Then $\{Af_n\}$ is bounded. Since $\operatorname{Ran}(A)$ is finite dimensional, it follows that $\{Af_n\}$ is contained in a compact subset $Y \subseteq X$. Y is sequentially compact, hence there exists a convergent subsequence. Therefore A is compact.

Define

 $\Omega := \{ A \in \mathcal{B}(X) : A \text{ is a finite rank operator} \}.$

(c) [10p] Show that

 $\overline{\Omega} \subseteq \mathcal{K}(X).$

[HINT: $\overline{\Omega}$ denotes the closure of $\Omega.]$

Suppose $K_n \in \Omega$ and $K_n \to K$. Then $K_n \in \mathcal{K}(X)$ by part (b). Since the limit of a sequence of compact operators is compact, we have that $K \in \mathcal{K}(X)$.

Soru 2 (Weak and Strong Convergence of Operators). Consider the Hilbert space $\ell^2(\mathbb{N}) = \{a = (a_j)_{j=1}^{\infty} \subseteq \mathbb{C} : \|a\|_2 < \infty\}$ with the inner product $\langle x, y \rangle_2 = \sum_{j=1}^{\infty} \overline{x_j} y_j$.

Define a sequence of (bounded linear) operators $S_n: \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ by

 $S_n(x_1, x_2, x_3, x_4, x_5, x_6, \ldots) = (x_{n+1}, x_{n+2}, x_{n+3}, x_{n+4}, \ldots).$

Let the operator $K: \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ be defined by

$$K = \left\langle \delta^1, \cdot \right\rangle_2 \delta^1$$

where δ^1 is the sequence (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...).

(a) [5p] Show that $||S_n|| = 1, \forall n \in \mathbb{N}.$

First $||S_n x||_2 = (\sum_{j=1}^{\infty} |(S_n x)_j|^2)^{\frac{1}{2}} = (\sum_{j=n+1}^{\infty} |x_j|^2)^{\frac{1}{2}} \le (\sum_{j=1}^{\infty} |x_j|^2)^{\frac{1}{2}} = ||x||_2$ for all x. So $||S_n|| \le 1$. Moreover, $||\delta^m||_2 = 1$ for all $m \in \mathbb{N}$, and $||S_n\delta^{n+1}||_2 = ||\delta^1||_2 = 1 = ||\delta^{n+1}||_2$. Therefore $||S_n|| \ge 1$.

(b) [3p] Show that $S_n \not\to 0$ as $n \to \infty$.

Since $||S_n|| = 1$ for all *n*, it follows that $||S_n - 0|| \neq 0$. So $S_n \neq 0$.

(c) [7p] Show that s- $\lim_{n\to\infty} S_n = 0$.

Let
$$x \in \ell^2(\mathbb{N})$$
. Then $||x||_2 < \infty$. So $\sum_{j=1}^n |x_j|^2 \to \sum_{j=1}^\infty |x_j|^2$ as $n \to \infty$. Therefore
 $||S_n x||_2 = (\sum_{j=1}^\infty |(S_n x)_j|^2)^{\frac{1}{2}} = (\sum_{j=n+1}^\infty |x_j|^2)^{\frac{1}{2}} \to 0$

as $n \to \infty$. Hence $S_n x \to 0$ for all x, and thus s- $\lim_{n\to\infty} S_n = 0$.

(d) [10p] Show that $S_n K \to 0$, but $KS_n \not\to 0$.

Since $||KS_n x||_2 = ||(x_{n+1}, 0, 0, 0, 0, 0, ...)||_2 = |x_{n+1}|$, it follows that $||KS_n|| = 1$ for all n. Therefore $KS_n \neq 0$.

Finally, since $S_n K = 0$ for all n, it is obvious that $S_n K \to 0$.

Soru 3 (Hilbert-Schmidt Operators). Let X be a Hilbert space.

(a) [5p] Give the definition of the Hilbert-Schmidt norm, ||·||₂.
[HINT: I do NOT want the ℓ²-norm of a sequence (also called ||·||₂)!!! I want the Hilbert-Schmidt norm of an operator.]

$$||K||_2 := \left(\sum_j s_j(K)^2\right)^{\frac{1}{2}}$$

where $\{s_j(K)\}\$ are the singular values of $K: X \to X$.

(b) [5p] Give the definition of $\mathcal{J}_2(X)$, the space of *Hilbert-Schmidt operators*.

$$\mathcal{J}_2(X) := \{ K \in \mathcal{K}(X) : \|K\|_2 < \infty \}.$$

Let $K \in \mathcal{J}_2(X)$ and let $A \in \mathcal{B}(X)$.

(c) [10p] Show that

$$\|AK\|_2 \le \|A\| \, \|K\|_2 \, .$$

[HINT: $\|\cdot\|$ denotes the operator norm, and $\|\cdot\|_2$ denotes the Hilbert-Schmidt norm.]

Let
$$\{u_j\}$$
 be an orthonormal basis of X. Then
 $\|AK\|_2^2 = \sum_j \|AKu_j\|^2 \le \sum_j \|A\|^2 \|Ku_j\|^2 = \|A\|^2 \sum_j \|Ku_j\|^2 = \|A\|^2 \|K\|_2^2$ by a Lemma¹ from the course.

¹actually it is Lemma 5.5, but you are not expected to remember numbers.

(d) [5p] Show that

$$\|KA\|_2 \le \|K\|_2 \, \|A\| \, .$$

[HINT: $(BC)^* = C^*B^*$.]

First note that KA is compact because K is compact and A is bounded. Since $s_j(T) = s_j(T^*)$ for all compact operators T, it follows immediately that

$$||KA||_2 = ||(KA)^*||_2 = ||A^*K^*||_2 \le ||A^*|| \, ||K^*||_2 = ||A|| \, ||K||_2.$$

Soru 4 (Reflexive Spaces). Let X be a Banach space, with dual space X^* and double dual space X^{**} . Define the map $J: X \to X^{**}$ by

$$J(\boldsymbol{x})(l) = l(\boldsymbol{x})$$

for all $l \in X^*$.

(a) [8p] Show that $||J(x)||_{X^{**}} \leq ||x||_X$ for all $x \in X$.

Since $|J(x)(l)| = |l(x)| \le ||l||_{X^*} ||x||_X$ for all $l \in X^*$, it follows that $||J(x)||_{X^{**}} \le ||x||_X$.

(b) [5p] Give the definition of a *reflexive* space.

The space X is called reflexive iff $J(X) = X^{**}$.

In class we proved that:

• X is reflexive $\implies X^*$ is reflexive;

and

• If X is reflexive, and $Y \subseteq X$ is a closed subspace, then Y is reflexive.

(c) [12p] Show that

 X^* is reflexive \implies X is reflexive.

[HINT: $X \cong J(X)$]

Suppose that X^* is reflexive. Then we know that X^{**} is reflexive. Since $J(X) \subseteq X^{**}$ is a closed subspace of X^{**} , it follows that J(X) is also reflexive. Finally, since J(X) is isomorphic to X we are finished.

Soru 5 (Weak Convergence).

(a) [5p] Let X be a Banach space. Give the definition of weak convergence in X [i.e. $x_n \rightharpoonup x$ for $x_n \in X$.].

We say that x_n converges weakly to x, and write $x_n \rightharpoonup x$, iff $l(x_n) \rightarrow l(x)$ for all $l \in X^*$.

Consider the Banach space $\ell^p(\mathbb{N})$ where

$$\ell^{p}(\mathbb{N}) := \left\{ a = (a_{j})_{j=1}^{\infty} \subseteq \mathbb{C} : \|a\|_{p} := \left(\sum_{j=1}^{\infty} |a_{j}|^{p}\right)^{\frac{1}{p}} < \infty \right\}$$

for $1 \leq p < \infty$, and

$$\ell^{\infty}(\mathbb{N}) := \Big\{ a = (a_j)_{j=1}^{\infty} \subseteq \mathbb{C} : \|a\|_{\infty} := \sup_j |a_j| < \infty \Big\}.$$

Define

$$\delta_j^n = \begin{cases} 1 & \text{if } n = j \\ 0 & \text{if } n \neq j. \end{cases}$$

(b) [6p] Show that $\delta^n \in \ell^p(\mathbb{N})$ for all $n \in \mathbb{N}$ and for all $1 \leq p \leq \infty$.

Clearly

$$\left\|\delta^{n}\right\|_{\infty} = \sup_{i} \left|\delta_{j}^{n}\right| = \left|\delta_{n}^{n}\right| = 1 < \infty.$$

So $\delta^n \in \ell^\infty(\mathbb{N})$ for all n.

Let $1 \leq p < \infty$. Then

$$\|\delta^{n}\|_{p}^{p} = \sum_{j=1}^{\infty} |\delta_{j}^{n}|^{p} = \|\delta_{n}^{n}\| = 1 < \infty.$$

So $\delta^n \in \ell^p(\mathbb{N})$ for all n.

(c) [7p] Let $1 . Show that <math>\delta^n \rightarrow 0$.

Let $l \in \ell^p(\mathbb{N})^*$. Then $\exists y \in \ell^q(\mathbb{N}) \ (\frac{1}{p} + \frac{1}{q} = 1)$ such that $l(x) = \sum_{j=1}^{\infty} y_j x_j$ for all $x \in \ell^p(\mathbb{N})$. So $|l(\delta^n)| = \left|\sum_{j=1}^{\infty} y_j \delta_j^n\right| = |y_n| \to 0$ as $n \to \infty$ since $y \in \ell^q(\mathbb{N})$. Therefore $\delta \to 0$ as $n \to \infty$.

(d) [7p] Show that δ^n is not weakly convergent in $\ell^1(\mathbb{N})$.

Consider first the functional $l \in \ell^1(\mathbb{N})^*$ defined by $l(x) = x_1$. Then $l(\delta^n) = 0$ for all $n \ge 2$. So clearly $l(\delta^n) \to 0 = l(0)$. Therefore, if δ^n is weakly convergent in $\ell^1(\mathbb{N})$, then $\delta^n \to 0$. Next consider $\tilde{l} \in \ell^1(\mathbb{N})^*$ defined by $\tilde{l}(x) = x_1 + x_2 + x_3 + x_4 + \ldots$ Then $\tilde{l}(\delta^n) = 1$ for all $n \in \mathbb{N}$, so $\tilde{l}(\delta^n) \neq 0$ as $n \to \infty$. Therefore δ^n is not weakly convergent in $\ell^1(\mathbb{N})$.