

2015.05.21 MAT462 Fonksiyonel Analiz II – Final Sınavın Çözümleri N. Course

Soru 1 (Weak Convergence and Weak-* Convergence of Functionals). Let X be a Banach space. Let $\{l_n\}_{n=1}^{\infty} \subseteq X^*$ be a sequence of linear functionals.

(a) [5p] Give the definition of $l_n \rightharpoonup l$. [HINT: $(X^*)^* = X^{**}$.]

We say that l_n converges weakly to l, and write $l_n \rightharpoonup l$, iff $j(l_n) \rightarrow j(l)$ for all $j \in X^{**}$.

(b) [5p] Give the definition of the weak-* limit of l_n .

We say that l is the weak-* limit of l_n if and only if $l_n(x) \to l(x)$ for all $x \in X$.

(c) [5p] Show that

$$l_n \to l \implies l_n \to l.$$

Suppose $l_n \to l$. Then $||l_n - l|| \to 0$. Let $j \in X^{**}$. Then j is bounded. Therefore

$$||j(l_n) - j(l)|| \le ||j|| ||l_n - l|| \to 0$$

and hence $j(l_n) \to j(l)$. So $l_n \rightharpoonup l$.

(d) [10p] Show that

 $l_n \rightarrow l \implies l$ is the weak-* limit of l_n

[HINT: Consider the map $J: X \to X^{**}$ defined by J(x)(l) = l(x).]

Since l is the weak-* limit of $l_n \iff l_n(x) \to l(x) \ \forall x \in X$ $\iff j(l_n) \to j(l) \ \forall j \in J(X)$ the result follows immediately from $J(X) \subseteq X^{**}$.

Soru 2 (Singular Values). Let X be a Hilbert space and let $K : X \to X$ be compact.

(a) [5p] Give the definition of the singular values of K.

For all $f \in X$, we can write $K^*Kf = \sum_j s_j^2 \langle u_j, f \rangle u_j$ where the u_j are orthonormal. The numbers $s_j \in \mathbb{R}$, $s_j > 0$ are called singular values of K. Now let $X = \ell^2(\mathbb{N})$. Suppose that

- (μ_n) is a sequence;
- $\mu_n \in \mathbb{C}$ for all n;
- $\mu_n \neq 0$ for all n; and
- $\lim_{n\to\infty}\mu_n=0.$

Define an operator $A: \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ by

$$A(x_1, x_2, x_3, x_4, \dots) = (\mu_1 x_1, \mu_2 x_2, \mu_3 x_3, \mu_4 x_4, \dots).$$

(b) [5p] Calculate A^* and A^*A .

Since

$$\langle A^*f,g\rangle = \langle f,Ag\rangle = \sum_j \overline{f}_j (Ag)_j = \sum_j \overline{f}_j \mu_j g_j = \sum_j \overline{\mu_j f_j} g_j = \langle (\overline{\mu}_1 f_1, \overline{\mu}_2 f_2, \ldots), g\rangle \,,$$

we can see that A^* multiplies f by the sequence $\overline{\mu}_n$. It is then easy to see that

$$A^*Ax = (\overline{\mu}_1 \mu_1 x_1, \overline{\mu}_2 \mu_2 x_2, \ldots) = (|\mu_1|^2 x_1, |\mu_2|^2 x_2, \ldots).$$

(c) [9p] Find the eigenvalues and orthonormal eigenvectors of A^*A .

If $x \neq 0$ and $\alpha x = A^*Ax = (|\mu_1|^2 x_1, |\mu_2|^2 x_2, |\mu_3|^2 x_3, |\mu_4|^2 x_4, \dots),$ then clearly $\alpha = |\mu_j|^2$ for some j. Conversely, clearly

$$|\mu_j|^2 \,\delta^j = A^* A \delta^j$$

So each $\alpha_n := |\mu_n|^2$ is an eigenvalue with corresponding eigenvector $u_n := \delta^n$. Clearly $\{\delta^n\}$ is an orthonormal set.

(Note: We might have repeating eigenvalues. For example, if $\mu_1 = 1$ and $\mu_7 = i$, then $\alpha_1 = \alpha_7$.) At this point, remove all repeats from the list $\alpha_1, \alpha_2, \alpha_3, \ldots$ and throw away the corresponding vectors. This leaves subsequences $(\alpha_{n_j})_{j=1}^J$ and $(\delta^{n_j})_{j=1}^J$, where $J \in \mathbb{N} \cup \{\infty\}$.

(d) [6p] Find the singular values of A.

The singular values are given by

$$s_j = \left\|Au_{n_j}\right\| = \left|\mu_{n_j}\right|.$$

Soru 3 (Hilbert-Schmidt Operators and Trace Class Operators). Let X be a Hilbert space.

(a) [3p] Give the definition of the Hilbert-Schmidt norm, ||·||₂.
 [HINT: I do NOT want the ℓ²-norm of a sequence (also called ||·||₂)!!! I want the Hilbert-Schmidt norm of an operator.]

$$\|K\|_2 := \left(\sum_j s_j(K)^2\right)^{\frac{1}{2}}$$

where $\{s_j(K)\}\$ are the singular values of $K: X \to X$.

(b) [3p] Give the definition of $\mathcal{J}_2(X)$, the space of *Hilbert-Schmidt operators*.

$$\mathcal{J}_2(X) := \{ K \in \mathcal{K}(X) : \|K\|_2 < \infty \}.$$

Let $K \in \mathcal{J}_1(X) \subseteq \mathcal{K}(X)$. Then we know that

$$K = \sum_{j} s_j \left\langle u_j, \cdot \right\rangle v_j,$$

where $s_j = s_j(K)$ are the singular values of K, u_j are orthonormal eigenvalues of K^*K and $v_j := \frac{1}{s_j} K u_j$.

Define

$$K_1 := \sum_j \sqrt{s_j} \langle u_j, \cdot \rangle \, v_j \qquad \text{and} \qquad K_2 := \sum_j \sqrt{s_j} \langle u_j, \cdot \rangle \, u_j.$$

(c) [8p] Show that $K_1K_2 = K$.

Since the u_j are orthonormal, we have that

$$K_1 K_2 f = \sum_j \sqrt{s_j} \langle u_j, K_2 f \rangle v_j$$

= $\sum_j \sqrt{s_j} \left\langle u_j, \sum_n \sqrt{s_n} \langle u_n, f \rangle u_n \right\rangle v_j$
= $\sum_j \sum_n \sqrt{s_j} \sqrt{s_n} \langle u_n, f \rangle \langle u_j, u_n \rangle v_j$
= $\sum_j s_j \langle u_j, f \rangle v_j$
= $K f$
for all $f \in X$.

(d) [11p] Show that $K_1, K_2 \in \mathcal{J}_2(X)$.

We proved in class that $||A||_2 < \infty \implies A$ is compact – so we only need to prove that the 2-norms of K_1 and K_2 are finite.

By Lemma 5.5, $\,$

$$\|K_1\|_2^2 = \sum_k \|K_1 u_k\|^2 = \sum_k \left\|\sum_j \sqrt{s_j} \langle u_j, u_k \rangle v_j\right\|^2 = \sum_k \|\sqrt{s_k} v_k\|^2$$
$$= \sum_k s_k = \|K\|_1 < \infty$$

since the u_j are orthonormal and since $||v_k|| = 1$ and $s_k > 0$ for all k.

A similar argument shows that $||K_2||_2 < \infty$. Therefore $K_1, K_2 \in \mathcal{J}_2(X)$.

Soru 4 (Closed Operators). Let X and Y be normed spaces.

(a) [5p] Give the definition of a *closed* operator $A : \mathfrak{D}(A) \subseteq X \to Y$.

An operator $A : \mathfrak{D}(A) \subseteq X \to Y$ is called a closed operator if the graph of A is a closed subset of $X \oplus Y$.

Now let $X = Y = \ell^2(\mathbb{N})$. Consider the linear operator $T : \mathfrak{D}(T) \to \ell^2(\mathbb{N})$ defined by

$$T(x_1, x_2, x_3, x_4, \ldots) := (x_1, 2x_2, 3x_3, 4x_4, \ldots)$$

where

$$\mathfrak{D}(T) := \{ x \in \ell^2(\mathbb{N}) : \exists N \in \mathbb{N} \text{ such that } x_n = 0 \ \forall n > N \}.$$

(b) [6p] Is T bounded? [Prove your answer]

 ${\cal T}$ is not bounded.

 $\text{Clearly } \|\delta^n\|_2 = 1 \text{ and } \delta^n \in \mathfrak{D}(T) \text{ for all } n, \text{ but } \|T\delta^n\|_2 = n \to \infty.$

(c) [14p] Is T closed? [Prove your answer]

[HINT: Consider the sequence of sequences (a^n) defined by $a_j^n := \begin{cases} \frac{1}{j^2} & j \le n \\ 0 & j > n \end{cases}$]

T is not closed. $Define a_j^n := \begin{cases} \frac{1}{j^2} & j \leq n \\ 0 & j > n \end{cases}$ $Clearly a^n \in \mathfrak{D}(T) \text{ for all } n. \text{ Moreover, } a^n \to (1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \ldots) =: a$ and $a \in \ell^2(\mathbb{N})$ because $||a||_2^2 = \sum_j \frac{1}{j^4} < \infty$, but $a \notin \mathfrak{D}(T)$.
Note that $Ta^n = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, \frac{1}{n^2}, 0, 0, 0, 0, \ldots) \to (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots) =: b$. Since $||b||_2^2 = \sum_j \frac{1}{n^2} < \infty, b \in \ell^2(\mathbb{N})$ also.
Since $(a^n, Ta^n) \in \Gamma(T)$ for all n, since $(a^n, Ta^n) \to (a, b) \in \ell^2(\mathbb{N}) \oplus \ell^2(\mathbb{N})$ and since $(a, b) \notin \Gamma(T)$, we have that T is not closed.

Soru 5 (Weak Cauchy Sequences). Let X be a Banach space.

(a) [5p] Give the definition of a <u>weak</u> Cauchy sequence in X.

A sequence x^n is called *weak Cauchy* iff $l(x^n)$ is Cauchy for all $l \in X^*$.

Now let $c_0(\mathbb{N}) := \{x = (x_j)_{j=1}^{\infty} \subseteq \mathbb{C} : x_j \to 0\} \subseteq \ell^{\infty}(\mathbb{N})$ and $||x||_{\infty} := \sup_j |x_j|$. Then $(c_0(\mathbb{N}), ||\cdot||_{\infty})$ is a Banach space.

We have seen that its dual space, $c_0(\mathbb{N})^*$, is isomorphic to $\ell^1(\mathbb{N})$: This implies that $\forall l \in c_0(\mathbb{N})^*$, $\exists b \in \ell^1(\mathbb{N})$ such that $l(x) = \sum_j b_j x_j$ for all $x \in c_0(\mathbb{N})$.

Now let $a = (a_j)_{j=1}^{\infty} \subseteq \mathbb{C}$ be a bounded sequence and define a sequence of sequences (x^n) by

$$x^{1} = (a_{1}, 0, 0, 0, 0, 0, 0, ...)$$

$$x^{2} = (a_{1}, a_{2}, 0, 0, 0, 0, 0, ...)$$

$$x^{3} = (a_{1}, a_{2}, a_{3}, 0, 0, 0, 0, ...)$$

$$x^{4} = (a_{1}, a_{2}, a_{3}, a_{4}, 0, 0, 0, ...)$$

$$\vdots$$

$$x^{n} = (a_{1}, ..., a_{n}, 0, 0, 0, ...)$$

$$\vdots$$

Clearly $x^n \in c_0(\mathbb{N})$ for all n.

(b) [10p] Show that (x^n) is a weak Cauchy sequence in $c_0(\mathbb{N})$. [HINT: $c_0(\mathbb{N})^* \cong \ell^1(\mathbb{N})$]

Let $l \in c_0(\mathbb{N})$ and let $b \in \ell^1(\mathbb{N})$ be chosen such that $l(x) = \sum_j b_j x_j$ for all x.

Now, if n > m > N we have that

$$|l(x^{n}) - l(x^{m})| = \left| \sum_{j=1}^{n} b_{j} a_{j} - \sum_{j=1}^{m} b_{j} a_{j} \right| = \left| \sum_{j=m+1}^{n} b_{j} a_{j} \right|$$
$$\leq \sum_{j=m+1}^{n} |b_{j} a_{j}| \leq \sum_{j=N}^{\infty} |b_{j}| |a_{j}| \to 0$$

as $N \to \infty$ because a is bounded and $b \in \ell^1(\mathbb{N})$. Therefore (x^n) is weak Cauchy.

(c) [10p] Is (x^n) weakly convergent in $c_0(\mathbb{N})$? [Prove your answer.]

For most choices of a, (x^n) is not weakly convergent.

For example, let $a = (1, 1, 1, 1, 1, 1, 1, 1, 1, \dots)$. Suppose that $x^n \rightarrow x$. Then clearly

$$\sum_{j=1}^{\infty} b_j x_j = l(x) = \lim_{n \to \infty} l(x^n) = \lim_{n \to \infty} \sum_{j=1}^n b_j = \sum_{j=1}^{\infty} b_j$$

for all $b \in \ell^1(\mathbb{N})$. Choosing $b = \delta^m$, we see that $x_m = 1$ for all m. But $(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \dots) \notin c_0(\mathbb{N})$. Therefore (x^n) is not weakly convergent in $c_0(\mathbb{N})$.