

2015.03.26 MAT462 Fonksiyonel Analiz II – Ara Sınavın Çözümleri N. Course

Soru 1 (Closable Operators).

(a) [7p] Give the definition of a *closed* operator.

We say that an operator $A : \mathfrak{D}(A) \subseteq X \to Y$ is closed iff, its graph is a closed subset of $X \oplus Y$.

(b) [8p] Give the definition of a *closable* operator.

We say that an operator $A : \mathfrak{D}(A) \subseteq X \to Y$ is closable iff,

$$\overline{\Gamma(A)} \cap \{(0,y) : y \in Y\} = \{(0,0)\}.$$

– or equivalently –

We say that an operator $A : \mathfrak{D}(A) \subseteq X \to Y$ is closable iff \exists an operator \overline{A} such that $\overline{\Gamma(A)} = \Gamma(\overline{A}).$

Now suppose that $X = Y = \ell^2(\mathbb{N})$. Define an operator $B : \mathfrak{D}(B) \subseteq \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ by

$$Ba = \left(\sum_{j \in \mathbb{N}} a_j\right) \delta^1$$

where $\mathfrak{D}(B) = \ell^1(\mathbb{N})$. Here, δ^1 denotes the sequence (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...). Define (b^n) by

$$b_j^n = \begin{cases} \frac{1}{n} & 1 \le j \le n\\ 0 & j > n. \end{cases}$$

So for example, $b^6 = (\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, 0, 0, 0, 0, 0, 0, \dots).$

(c) [5p] Calculate $\|b^n\|_1$.

$$\left\| b^n \right\|_1 = 1$$

(d) [5p] Calculate $\|b^n\|_2$.

 $\|b^n\|_2 = \frac{1}{\sqrt{n}}$

(e) [5p] Calculate Bb^n .

 $Bb^n=\delta^1$

(f) [20p] Show that B is not closable.

Clearly $b^n \to 0$ (by part (d)), but $Bb^n = \delta^1 \not\to 0 = B0$. By a result from the course, B is not closable.

Soru 2 (The Hahn-Banach Theorem). Let X be a normed space.

(a) [10p] Give the definition of a *convex* function on X.

A function $\phi: X \to \mathbb{R}$ is called *convex* iff

$$\phi \left(\lambda x + (1 - \lambda)y\right) \le \lambda \phi(x) + (1 - \lambda)\phi(y)$$

for all $x, y \in X$ and for all $\lambda \in (0, 1)$.

Define

$$M := \{ m = (m_j)_{j=1}^{\infty} \subseteq \mathbb{C} : \exists N \in \mathbb{N} \text{ such that } m_j = 0 \ \forall j > N \}.$$

(b) [5p] Show that M is a subspace of $\ell^{\infty}(\mathbb{N})$.

Clearly $M \subseteq \ell^{\infty}(\mathbb{N})$. It is easy to prove that if $x, y \in M$ and $\lambda \in \mathbb{C}$, then $x + \lambda y \in M$; which proves that M is a linear space.

(c) [5p] Show that M is not closed.

Let $x^n = (1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, 0, 0, 0, \dots)$. Clearly $x^n \in M$ for all n. Moreover, it is easy to see that $x^n \to (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots) \notin M$ (convergence in the ℓ^{∞} -norm). Therefore M is not closed.

(d) [15p] Show that

$$\overline{M} = \{ a \in \ell^{\infty}(\mathbb{N}) : a_j \to 0 \text{ as } j \to \infty \}.$$

To prove " \supseteq ": Let $x \in \{a \in \ell^{\infty}(\mathbb{N}) : a_j \to 0 \text{ as } j \to \infty\}$ and define $x^n := (x_1, x_2, \dots, x_n, 0, 0, 0, \dots)$. Clearly $x^n \in M$ for all n and clearly $||x^n - x||_{\infty} \to 0$.

Conversely, to prove " \subseteq ": Suppose that $x^n \in M$ for all n and suppose that $x^n \to x$ as $n \to \infty$ in $\ell^{\infty}(\mathbb{N})$. We must prove that $x_j \to 0$ as $j \to \infty$.

Let $\varepsilon > 0$. Then $\exists N$ such that $||x^n - x||_{\infty} < \varepsilon$ for all n > N. So $|x_j^n - x_j| < \varepsilon$ for all n > N and for all j.

Now since $x^n \in M$, we know that $x_j^n = 0$ for all sufficiently large j. Hence $|x_j| < \varepsilon$ for all sufficiently large j and we are done.

- (e) [15p] Show that \exists a bounded linear functional $l \in \ell^{\infty}(\mathbb{N})^*$ such that
 - (a) l(m) = 0 for all $m \in M$; and
 - (b) $l(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \dots) = 1.$

By Corollary 4.12, there exists a linear functional l such that (i) l = 0 on M; l(1, 1, 1, 1, ...) = dist((1, 1, 1, 1, ...), M); and (iii) ||l|| = 1.

Since

$$||(1, 1, 1, 1, 1, \dots) - m||_{\infty} \ge 1$$

for all $m \in M$ and since

$$\|(1, 1, 1, 1, 1, ...) - (1, 0, 0, 0, 0, ...)\|_{\infty} = 1,$$

we are finished.

Soru 3 (Weak Convergence). Let X be a Banach space.

(a) [10p] Let (x_n) be a sequence in X. Give the definition of x_n converges weakly to x (i.e. $x_n \rightharpoonup x$ as $n \rightarrow \infty$).

We say that x_n converges weakly to x (and write $x_n \rightharpoonup x$ as $n \rightarrow \infty$) iff $l(x_n) \rightarrow l(x)$ as $n \rightarrow \infty$, for all $l \in X^*$.

(b) [10p] Show that the weak limit is unique (i.e. show that if $x_n \rightharpoonup x$ and $x_n \rightharpoonup \tilde{x}$, then $x = \tilde{x}$).

Suppose that $x_n \to x$ and $x_n \to \tilde{x}$. Then $l(\tilde{x} - x) = l(\tilde{x}) - l(x) = \lim_{n \to \infty} l(x_n) - \lim_{n \to \infty} l(x_n) = 0$ for all $l \in X^*$. It follows that $\tilde{x} - x = 0$. Hence weak limits are unique.

Now suppose that

- X is a Hilbert space;
- $Y \subseteq X;$
- span Y is dense in X;
- (x_n) is a bounded sequence in X;
- $x \in X;$
- for any $y \in Y$, $\lim_{n \to \infty} \langle x_n x, y \rangle = 0$.
- (c) [30p] Show that $x_n \rightharpoonup x$ as $n \rightarrow \infty$.

We are told that $\lim_{n\to\infty} \langle x_n - x, y \rangle = 0$ for all $y \in Y$. By linearity, we can show (you fill in the details) that $\lim_{n\to\infty} \langle x_n - x, y \rangle = 0$ for all $y \in \operatorname{span} Y$.

Let $\varepsilon > 0$ and let $h \in X$. Let $C = \sup_{n} \{ \|x\|, \|x_n\|, 1 \}$. Clearly $C < \infty$ since (x_n) is bounded.

Since span Y is dense in X, we can choose $y \in \operatorname{span} Y$ such that $||h - y|| < \frac{\varepsilon}{4C}$. Since $\lim_{n \to \infty} \langle x_n - x, y \rangle = 0$, we can assume that $|\langle x_n - x, y \rangle| < \frac{\varepsilon}{2}$ for sufficiently large n.

Then for sufficiently large n, we have that

$$\begin{aligned} |\langle x_n - x, h \rangle| &= |\langle x_n - x, y \rangle + \langle x_n - x, h - y \rangle| \\ &\leq |\langle x_n - x, y \rangle| + |\langle x_n - x, h - y \rangle| \\ &\leq |\langle x_n - x, y \rangle| + ||x_n - x|| ||h - y|| \\ &\leq \frac{\varepsilon}{2} + 2C\frac{\varepsilon}{4C} \\ &= \varepsilon \end{aligned}$$

by the Cauchy-Schwarz Inequality. Hence $\langle x_n, h \rangle \to \langle x, h \rangle$.

It follows that $x_n \rightharpoonup x$ by the Riesz Representation Theorem.