

2016.03.29 MAT462 Fonksiyonel Analiz II – Ara Sınavın Çözümleri N. Course

Soru 1 (Strong and Weak Convergence of Operators). Let X and Z be Banach spaces. Let $A_n : X \to Z$ be a sequence of operators and let $A : X \to Z$ be an operator.

- (a) [1p] Please write your student number at the top right of this page.
- (b) [5p] Give the definition of strong convergence of A_n .

We say that A_n converges strongly to A, and we write s- $\lim_{n\to\infty} A_n = A$, if and only if

 $A_n x \to A x$

for all $x \in X$.

Suppose that

- $Y \subseteq X;$
- Y is dense in X;
- $A_n y \to A y$ for all $y \in Y$;
- $||A|| \leq C \in \mathbb{R}$; and
- $||A_n|| \leq C$ for all $n \in \mathbb{N}$.
- (c) [19p] Show that s- $\lim_{n\to\infty} A_n = A$.

Assume without loss of generality that C > 0. Let $\varepsilon > 0$. Let $x \in X$. Choose $y \in Y$ such that $||x - y|| < \frac{\varepsilon}{3C}$. Since $A_n y \to Ay$, $\exists N \in \mathbb{N}$ such that $n > N \implies ||A_n y - Ay|| < \frac{\varepsilon}{3}$.

But then

$$n > N \implies ||A_n x - Ax|| \le ||A_n x - A_n y|| + ||A_n y - Ay|| + ||Ay - Ax||$$

$$\le ||A_n|| ||x - y|| + ||A_n y - Ay|| + ||A|| ||y - x||$$

$$< C \frac{\varepsilon}{3C} + \frac{\varepsilon}{3} + C \frac{\varepsilon}{3C} = \varepsilon.$$

Therefore $A_n x \to A x$ for all $x \in X$ and we are done.

(d) [5p] Give the definition of weak convergence of A_n .

We say that A_n converges weakly to A, and we write w $\lim_{n\to\infty} A_n = A$, if and only if $A_n x \rightharpoonup A x$ for all $x \in X$.

Now suppose that

- $Y \subseteq X;$
- Y is dense in X;
- $A_n y \rightharpoonup A y$ for all $y \in Y$;
- $||A|| \leq C \in \mathbb{R}$; and
- $||A_n|| \leq C$ for all $n \in \mathbb{N}$.
- (e) [20p] Show that w-lim_{$n\to\infty$} $A_n = A$.

Let $\varepsilon > 0$. Let $x \in X$ and let $l \in Z^*$. Choose $y \in Y$ such that $||x - y|| < \frac{\varepsilon}{3C||l||}$. Since $A_n y \rightharpoonup Ay$, $\exists N \in \mathbb{N}$ such that $n > N \implies |l(A_n y) - l(Ay)| < \frac{\varepsilon}{3}$.

But then

$$\begin{split} n > N \implies |l(A_n x) - l(Ax)| &\leq |l(A_n x) - l(A_n y)| + |l(A_n y) - l(Ay)| + |l(Ay) - l(Ax)| \\ &\leq ||l| \, ||A_n|| \, ||x - y|| + |l(A_n y) - l(Ay)| + ||l|| \, ||A|| \, ||y - x|| \\ &< ||l|| \, C \frac{\varepsilon}{3C \, ||l||} + \frac{\varepsilon}{3} + ||l|| \, C \frac{\varepsilon}{3C \, ||l||} = \varepsilon. \end{split}$$

Therefore $A_n x \rightharpoonup Ax$ for all $x \in X$ and we are done.

Soru 2 (Closed Operators).

- (a) [1p] Please write your student number at the top right of this page.
- (b) [5p] Give the definition of the graph of an operator.

Let $A : \mathfrak{D}(A) \subseteq X \to Y$ be an operator. The graph of A is $\Gamma(A) = \{(x, Ax) : x \in \mathfrak{D}(A)\}.$

(c) [5p] Give the definition of a *closed* operator.

We say that an operator $A : \mathfrak{D}(A) \subseteq X \to Y$ is closed iff, its graph is a closed subset of $X \oplus Y$.

(d) [10p] Give an example of a closed operator. Prove that your operator is closed.

Many possible answers. E.g. identity operator on a Banach space.

(e) [10p] Give an example of an operator which is not closed. Prove that your operator is not closed.

Many possible answers. E.g. any unbounded operator defined on all of a Banach space.

Now let X and Y be normed spaces. Let $\mathfrak{D}(T) \subseteq X$ and let $T : \mathfrak{D}(T) \to Y$ be a bounded linear operator.

(f) [19p] Show that

 $\mathfrak{D}(T)$ is a closed subset of $X \implies T$ is a closed operator.

Let $(x_n, Tx_n) \subseteq \Gamma(T)$ be a sequence such that $(x_n, Tx_n) \to (x, y) \in X \oplus Y$. Then $x_n \to x \in X$. Since $\mathfrak{D}(T)$ is a closed set, we know that $x \in \mathfrak{D}(T)$.

Moreover, since T is bounded (and therefore continuous), we know that $Tx_n \to Tx$. Therefore $\Gamma(T)$ is a closed set and hence T is a closed operator.

Soru 3 (Reflexive Spaces). Let X be a normed vector space. Define an operator J by

$$J(x)(l) = l(x)$$

for all $x \in X$ and $l \in X^*$.

- (a) [1p] Please write your student number at the top right of this page.
- (b) [10p] Fix $x_0 \in X$. Show that $J(x_0) \in X^{**}$. [In other words: Show that $J(x_0) : X^* \to \mathbb{C}$ is bounded and linear]

Clearly

$$J(x_0)(\alpha l + \tilde{l}) = (\alpha l + \tilde{l})(x_0) = \alpha l(x_0) + \tilde{l}(x_0) = \alpha J(x_0)(l) + J(x_0)(\tilde{l})$$

for all $\alpha \in \mathbb{C}$ and for all $l, \tilde{l} \in X^*$. Thus $J(x_0)$ is linear.

Since

$$|J(x_0)(l)| = |l(x_0)| \le ||l|| ||x_0||$$

for all $l \in X^*$, we have that $||J(x_0)|| \le ||x_0||$. Therefore $J(x_0)$ is bounded.

Hence $J(x_0) \in X^{**}$.

(c) [15p] Show that $J: X \to J(X)$ is an isomorphism.

[HINT: You must show that J is injective, that $J(\lambda x + y) = \lambda J(x) + J(y) \forall \lambda, x, y$ and that $||J(x)|| = ||x|| \forall x$.] [HINT: Use the Hahn-Banach Theorem or one of its corollaries for the final part of the previous hint.]

First, suppose that J(x) = J(y). Then we have

$$l(x) = J(x)(l) = J(y)(l) = l(y)$$

for all $l \in X^*$, which implies that x = y. Hence J is an injection.

Clearly

$$J(\lambda x + y)(l) = l(\lambda x + y) = \lambda l(x) + l(y) = \lambda J(x)(l) + J(y)(l)$$

for all $l \in X^*$. So $J(\lambda x + y) = \lambda J(x) + J(y)$ for all $\lambda \in \mathbb{C}$ and for all $x, y \in X$.

Finally, it follows from the Hahn-Banach Theorem that for all $x \in X$, $\exists l_x \in X^*$ such that $||l_x|| = 1$ and $l_x(x) = ||x||$. So

$$|J(x)(l_x)| = |l_x(x)| = ||x||$$

which, together with part (b) proves that $||J(x)|| = ||x|| \quad \forall x$.

Therefore, J is an isomorphism.

(d) [9p] Give the definition of a reflexive space.

X is called reflexive if and only if $J(X) = X^{**}$

We proved in MAT461 Fonksiyonel Analiz I that if X is a normed space and Y is a Banach space, then $\mathcal{B}(X, Y)$ is a Banach space. Because \mathbb{C} is complete, it follows that a dual space is always a Banach space.

Since X^{**} is the dual space of X^* , X^{**} is complete. But $J(X) = X^{**}$ because X is reflexive, so J(X) is complete. Finally by part (d) we have that $X \cong J(X)$ is complete.