

2017–05–23 MAT462 Fonksiyonel Analiz II – Final Sınavın Çözümleri N. Course

Soru 1 (Closed and Closable Operators).

(a) [5p] State the Closed Graph Theorem

Theorem (The Closed Graph Theorem). Let $A : X \to Y$ be a linear map from a Banach space X to another Banach space Y. Then A is continuous if and only if its graph is closed.

(b) [5p] Give the definition of a *closable operator*.

An operator A is called closable iff there exists an operator \overline{A} such that $\overline{\Gamma(A)} = \Gamma(\overline{A})$. \overline{A} is called the closure of A.

(c) [1p] Please write your student number at the top-right of this page.

Now suppose that

- A is a closable operator;
- \overline{A} denotes the closure of A; and
- \overline{A} is injective.
- (d) [14p] Show that $\overline{A}^{-1} = \overline{A^{-1}}$.

We will define the notation

It is then trivial to see that $\Gamma(A^{-1}) = \Gamma^{-1}(A)$. Then we have that

$$\overline{\Gamma(A^{-1})} = \overline{\Gamma^{-1}(A)} = \overline{\Gamma(A)}^{-1} = \Gamma^{-1}(\overline{A}) = \Gamma(\overline{A}^{-1})$$

 $\Gamma^{-1} = \{ (y, x) : (x, y) \in \Gamma \}.$

Soru 2 (The Hahn-Banach Theorem and Reflexivity). Let X be a Banach space. Consider the map $J: X \to X^{**}$ defined by J(x)(l) = l(x).

Note that in the formula J(x)(l) = l(x), we have $x \in X$.

- (a) [2p] In the formula J(x)(l) = l(x), what set is l in?
 - $l \in X^*$
- (b) [2p] In the formula J(x)(l) = l(x), what set is J(x) in?

 $J(x) \in X^{**}$

(c) [2p] In the formula J(x)(l) = l(x), what set is J(x)(l) in?

 $J(x)(l) \in \mathbb{C}$

(d) [3p] Give the definition of a *reflexive space*.

X is called reflexive iff J is surjective.

(e) [5p] Show that J is injective.

Suppose that $x \neq y$. Clearly there exists $l \in X^*$ such that $l(x) \neq l(y)$. Then $J(x)(l) = l(x) \neq l(y) = J(y)(l)$ which implies that $J(x) \neq J(y)$. Therefore J is injective.

- (f) [1p] Please write your student number at the top-right of this page.
- (g) [5p] Show that $||J(x)||_{X^{**}} \leq ||x||_X$ for all $x \in X$.

Since $|J(x)(l)| = |l(x)| \le ||l|| ||x||$

we have that $||J(x)|| \le ||x||$.

(h) [5p] Show that $||J(x)||_{X^{**}} \ge ||x||_X$ for all $x \in X$.

Fix $x_0 \in X$. By the Hahn-Banach Theorem (there was a hint in the question name), there exists a linear functional l_0 which satisfies

• $||l_0|| = 1$; and • $l_0(x_0) = ||x_0||$. Hence $|J(x_0)(l_0)| = |l_0(x_0)| = ||x_0||$ which implies that $||J(x_0)|| \ge ||x_0||$.

Soru 3 (Weak Convergence.). [25p] Please write two pages about weak convergence.

Soru 4 (The Baire Category Theorem and its Applications).

(a) [5p] Give the definition of a nowhere dense set.

A set is called nowhere dense iff its closure has empty interior.

(b) [7p] Give an example of a non-empty, nowhere dense set. You must prove that your set is nowhere dense.

An easy example would be a line in \mathbb{R}^2 . Proof omitted.

(c) [5p] State the Open Mapping Theorem

Theorem (The Open Mapping Theorem). Let $A \in \mathcal{B}(X, Y)$ be a bounded linear operator from one Banach space onto another. Then A is open (i.e. maps open sets to open sets).

Theorem (The Inverse Mapping Theorem). Let $A \in \mathcal{B}(X, Y)$ be a bounded linear bijection between Banach spaces. Then A^{-1} is continuous.

(d) [8p] Prove the Inverse Mapping Theorem. [HINT: Use the Open Mapping Theorem.]

Since A^{-1} is continuous $\iff A$ is open, the result follows by the Open Mapping Theorem.

Soru 5 (Hilbert-Schmidt Operators).

(a) [5p] Give the definition of the *Hilbert-Schmidt norm* and the definition of a *Hilbert-Schmidt* operator

The Hilbert-Schmidt norm of $K: X \to X$ is

$$\|K\|_2 = \left(\sum_j s_j(K)^2\right)^{\frac{1}{2}}$$

where $s_j(K)$ are the singular values of K. A compact operator K is a Hilbert-Schmidt operator iff $||K||_2 < \infty$.

Now consider the operator $K: \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ defined by

$$(Kf)_n = \sum_{j=1}^{\infty} k_{n+j} f_j$$

where $k_j \in \mathbb{C}$ for all $j \in \mathbb{N}$. If this is unclear, I mean that

$$Kf = K(f_1, f_2, f_3, \ldots) = \left(\sum_{j=1}^{\infty} k_{1+j} f_j, \sum_{j=1}^{\infty} k_{2+j} f_j, \sum_{j=1}^{\infty} k_{3+j} f_j, \ldots\right).$$

Define a positive real number by

$$\lambda = \sum_{j=1}^{\infty} j |k_{j+1}|^2.$$

(b) [20p] Show that

K is a Hilbert-Schmidt operator $\iff \lambda < \infty$

and show that $\|K\|_2 = \sqrt{\lambda}$ in this case.

By a Lemma from the course, a useful alternate formula for the Hilbert-Schmidt norm is

 $\frac{1}{2}$

$$\left\|K\right\|_{2} = \left(\sum_{j} \left\|Kw^{j}\right\|^{2}\right)$$

for any orthonormal basis $\{w^j\}$. I will use this formula with the orthonormal basis $\{\delta^j\}$. Since

$$(K\delta^p)_n = \sum_{j=1}^{\infty} k_{n+j}\delta^p_j = 0 + \ldots + 0 + k_{n+p} + 0 + \ldots = k_{n+p},$$

we have that

$$||K\delta^p||^2 = \sum_{n=1}^{\infty} |(K\delta^p)_n|^2 = \sum_{n=1}^{\infty} |k_{n+p}|^2$$

and that

$$||K||_{2}^{2} = \sum_{p=1}^{\infty} ||K\delta^{p}||^{2} = \sum_{p=1}^{\infty} \sum_{n=1}^{\infty} |k_{n+p}|^{2} = |k_{2}|^{2} + 2|k_{3}|^{2} + 3|k_{4}|^{2} + \ldots = \lambda.$$

It is then trivial to see that K is Hilbert-Schmidt if and only if $\lambda < \infty$.