

MAT233 Matematik III – Ödev 2 2014 - 15

N. Course

SON TESLİM TARİHİ: Çarşamba 15 Ekim 2014 saat 10:00'e kadar.

Egzersiz 4 (Eccentricity). [25p] A conic section has vertices at $(\pm 70, 0)$ and has eccentricity 0.1. Find a Cartesian equation for this conic section. (What type of conic section is this?)

Egzersiz 5 (Rotating Coordinate Axes).

- (a) [40p] Rotate the coordinate axes to change $x^2 + xy + y^2 = 1$ into an equation that has no cross product (xy or x'y') term. [HINT: First solve $\cot 2\alpha = \frac{A-C}{B}$ to find the angle of rotation α .]
- (b) [15p] Then sketch the curve.

Egzersiz 6 (The Discriminant Test).

- (a) [10p] What is the discriminant of $3x^2 5xy + 3y^2 x + 2y = 0$? Is this curve an ellipse, a parabola or a hyperbola?
- (b) [10p] What is the discriminant of $x^2 6xy + 9y^2 6x + 9y = -12$? Is this curve an ellipse, a parabola or a hyperbola?

Ödev 1'in çözümleri

- (a) Focus is (3,0), directrix is x = -3.
 (b) Focus is (0,-2), directrix is y = 2. Sketches omitted.
- 2. (a) First $\sqrt{(x+c)^2+y^2} = 2a \sqrt{(x-c)^2+y^2}$. Squaring gives $(x+c)^2 + y^2 = 4a^2 4a\sqrt{(x-c)^2+y^2} + (x-c)^2 + y^2$. So $4cx = 4a^2 4a\sqrt{(x-c)^2+y^2}$ which rearranges to $a\sqrt{(x-c)^2+y^2} = a^2 cx$. Squaring again, we get $a^2(x-c)^2 + a^2y^2 = a^4 2a^2cx + c^2x^2$, which is $(a^2-c^2)x^2 + a^2y^2 = a^2(a^2-c^2)$. Finally divide by $a^2(a^2-c^2)$ to get $\frac{x^2}{a^2} + \frac{y^2}{a^2 - c^2} = 1$. (b) $c = \sqrt{a^2 - b^2} = \sqrt{3 - 2} = 1$. The foci are $(0, \pm 1)$. The vertices are $(0, \pm \sqrt{3})$. The ellipse crosses the x-axis at

 $(\pm\sqrt{2},0)$. Sketch omitted.

3. The foci are at $(0, \pm c) = (0, \pm \sqrt{2})$ so $c = \sqrt{2}$. The asymptotes are $y = \pm \frac{a}{b}x = \pm x$ so a = b. Since $2 = c^2 = c^2$ $a^2 + b^2 = 2a^2$, we know that a = b = 1. Therefore the equation is $y^2 - x^2 = 1$.