

2014 - 15

 (x_0, y_0)

MAT233 Matematik III – Ödev 6

N. Course

SON TESLİM TARİHİ: Çarşamba 3 Aralık 2014 saat 10:00'e kadar.

Egzersiz 14 (Dot Product). [25p] Suppose that $(x_0, y_0) \in \mathbb{R}^2$ is a point and that $\mathbf{N} = A\mathbf{i} + B\mathbf{j}$ is a vector $(A, B \in \mathbb{R})$. Show that the line through (x_0, y_0) , which is perpendicular to \mathbf{N} (see diagram below), is given by the formula

$$A(x - x_0) + B(y - y_0) = 0.$$

 $\xrightarrow{} x \xrightarrow{}

$$\frac{\partial z}{\partial x} \frac{\partial u}{\partial u} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial u}$$
, etc.) to show that $\frac{\partial z}{\partial z} = \frac{\partial z}{\partial z}$

$$\frac{\partial z}{\partial u} = 0$$
 and $\frac{\partial z}{\partial v} = -1.$

Egzersiz 16 (Gradients). [25p] If $g : \mathbb{R}^2 \to \mathbb{R}$ is defined by

 $\mathbf{N} = A\mathbf{i} + B\mathbf{j}$

$$q(x,y) = \log(x^2 + y^2)$$

(where $\log = \ln = \log_e$ is the natural logarithm), calculate

$$\nabla g|_{(1,1)}$$

Egzersiz 17 (Directional Derivatives). [25p] Suppose that $h : \mathbb{R}^3 \to \mathbb{R}$ is defined by

$$a(x, y, z) = x^2 + 2y^2 - 3z^2.$$

Suppose that $P_0 = (1, 1, 1)$ and $\mathbf{v} = \mathbf{i} + \mathbf{j} + \mathbf{k}$, where $\mathbf{i} = (1, 0, 0)$, $\mathbf{j} = (0, 1, 0)$ and $\mathbf{k} = (0, 0, 1)$.

Calculate the derivative of h at the point P_0 in the direction of \mathbf{v} .

[HINT: \mathbf{v} is not a unit vector.]

Ödev 5'in çözümleri

- 11. (a) Domain = all points in the xy-plane = \mathbb{R}^2 . (b) Range: all real numbers \mathbb{R} . (c) level curves are straight lines y x = c parallel to the line y = x. (d) no boundary points. (e) both open and closed. (f) unbounded.
- 12. (a) Domain: set of all (x,y) so that $y x \ge 0 \implies y \ge x$. (b) Range: $z \ge 0$. (c) level curves are straight lines of the form y x = c where $c \ge 0$. (d) boundary is $\sqrt{y x} = 0 \implies y = x$, a straight line. (e) closed. (f) unbounded.

