

2014.11.20	MAT233 Matematik III – Ara Sınavın Çözümleri	N. Course
Soru 1 (Shifti	ing Conic Sections). Consider	
	$x^2 - 4y^2 + 2x + 8y - 7 = 0$	(1)
(a) [5p] The	graph of (1) is	
	an ellipse, a parabola, \checkmark a hyperbola.	
The disc	criminant is $B^2 - 4AC = 0 - 4 \times 1 \times -4 = 0 + 16 > 0.$	
Therefor	re the conic section is a hyperbola.	

(b) [5p] Rearrange (1) to the form

$$\frac{(x-x_0)^2}{A} + \frac{(y-y_0)^2}{B} = 1.$$

First we complete the square in x and y to put the equation in standard form:

$$x^{2} - 4y^{2} + 2x + 8y = 7$$

$$(x^{2} + 2x + 1) - 4(y^{2} - 2y + 1) = 7 + 1 - 4$$

$$\frac{(x+1)^{2}}{4} - (y-1)^{2} = 1$$

(c) [5p] Find the centre of (1).

$$\frac{(x+1)^2}{4} - (y-1)^2 = 1$$

This is the standard equation for a hyperbola $(\frac{X^2}{a^2} - \frac{Y^2}{b^2} = 1)$, but with X replaced by x + 1 and with Y replaced with y - 1. Therefore the centre is (-1, 1).

(d) [5p] Find the asymptotes of (1).

We find the asymptotes by replacing the 1 with a 0:

$$\frac{(x+1)^2}{4} - (y-1)^2 = 0$$

$$(y-1)^2 = \frac{(x+1)^2}{4}$$

$$y-1 = \pm \frac{1}{2}(x+1)$$

$$y = 1 \pm \frac{1}{2}(x+1)$$

$$y = \frac{1}{2} - \frac{1}{2}x \text{ or } y = \frac{3}{2} + \frac{1}{2}x$$

(e) [5p] Find the focus/foci of (1).

Clearly we have a = 2 and b = 1. So $c^2 = a^2 + b^2 = 5$. The equation $\frac{X^2}{a^2} - \frac{Y^2}{b^2} = 1$ has foci $(\pm\sqrt{5}, 0)$. Therefore our shifted equation has foci $(-1 \pm \sqrt{5}, 1)$.

(f) [5p] Find the vertex/vertices of (1).

The equation $\frac{X^2}{a^2} - \frac{Y^2}{b^2} = 1$ has vertices $(\pm a, 0) = (\pm 2, 0)$. Therefore our shifted equation has vertices (-3, 1) and (1, 1)

$$x^2 - 4y^2 + 2x + 8y - 7 = 0 \tag{1}$$

(g) [20p] Sketch the graph of (1). Include the centre, focus/foci and asymptotes in your sketch. [HINT: $\sqrt{2} \approx 1.4$, $\sqrt{3} \approx 1.7$, $\sqrt{5} \approx 2.2$ and $\sqrt{7} \approx 2.6$.]

Soru 2 (Polar Coordinates).

(a) $\left[30p\right]$ Graph the curve

```
r = 1 + 2\cos\theta.
```


Let R be the region enclosed by the spiral $r=\theta$ for $0\leq\theta\leq\pi,$ as shown below.

(b) [20p] Calculate the area of R.

The area of *R* is

$$A = \int_0^{\pi} \frac{1}{2} r^2 \ d\theta = \int_0^{\pi} \frac{1}{2} \theta^2 \ d\theta = \left[\frac{1}{6} \theta^3\right]_0^{\pi} = \frac{\pi^3}{6}$$

Soru 3 (Functions of Several Variables). Consider the function $f : \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x, y) = x^2 - y$.

(a) [10p] Plot the level curves f(x, y) = -2, f(x, y) = -1, f(x, y) = 0, f(x, y) = 1 and f(x, y) = 2 in \mathbb{R}^2 . Label each level curve with the value of f.

(b) [16p] Sketch the surface z = f(x, y) in \mathbb{R}^3 .

Now let $g: \mathbb{R}^3 \to \mathbb{R}$ be defined by $g(x, y, z) = e^{xz} \sin^2(x - 3y) + \cos z$.

(c) [8p] Calculate $\frac{\partial g}{\partial x}$.

$$g_x = ze^{xz}\sin^2(x-3y) + 2e^{xz}\sin(x-3y)\cos(x-3y)$$

(d) [8p] Calculate $\frac{\partial g}{\partial y}$.

$$g_y = -6e^{xz}\sin(x-3y)\cos(x-3y)$$

(e) [8p] Calculate $\frac{\partial g}{\partial z}$.

$$g_z = xe^{xz}\sin^2(x-3y) - \sin z$$