

| Your Name                                                                                                                                                                                                | Your Signature  |         |        |       |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|--------|-------|--|--|--|--|--|
| Student ID #                                                                                                                                                                                             |                 |         |        |       |  |  |  |  |  |
| Professor's Name  • This exam is closed book.                                                                                                                                                            | Your Department |         |        |       |  |  |  |  |  |
| • Give your answers in exact form (for example $\frac{\pi}{3}$ or $5\sqrt{3}$ noted in particular problems.                                                                                              | B), except as   | Problem | Points | Score |  |  |  |  |  |
| • Calculators, cell phones are not allowed.                                                                                                                                                              | 1               | 20      |        |       |  |  |  |  |  |
| <ul> <li>In order to receive credit, you must show all of your w<br/>do not indicate the way in which you solved a problem, y<br/>little or no credit for it, even if your answer is correct.</li> </ul> | 2               | 20      |        |       |  |  |  |  |  |
| work in evaluating any limits, derivatives.                                                                                                                                                              | 3               | 20      |        |       |  |  |  |  |  |
| <ul> <li>Place a box around your answer to each question.</li> <li>If you need more norm, you the health of the pages and if</li> </ul>                                                                  | ndicate that    | 4       | 20     |       |  |  |  |  |  |
| • If you need more room, use the backs of the pages and i you have done so.                                                                                                                              | ndicate that    | 5       | 20     |       |  |  |  |  |  |
| <ul><li> Do not ask the invigilator anything.</li><li> Use a <b>BLUE ball-point pen</b> to fill the cover sheet. F</li></ul>                                                                             | Please make     | Total:  | 100    |       |  |  |  |  |  |

• Time limit is 80 min. Do not write in the table to the right.

sure that your exam is complete.

# 1. 20 points Calculate the determinant of the matrix

$$A = \begin{bmatrix} 2 & 2 & 1 & 0 \\ -1 & 0 & 3 & 0 \\ 4 & 9 & 3 & 1 \\ 0 & -1 & 5 & 7 \end{bmatrix}.$$

(You may wish to use appropriate row or column operations to simplify your calculations.)

| Solution: |                                                                                                                                                                                                                                                                                                                |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A  =      | $ \begin{vmatrix} 2 & 2 & 1 & 0 \\ -1 & 0 & 3 & 0 \\ 4 & 9 & 3 & 1 \\ 0 & -1 & 5 & 7 \end{vmatrix} = \begin{vmatrix} 2 & 2 & 1 & 0 \\ -1 & 0 & 3 & 0 \\ 4 & 9 & 3 & 1 \\ -28 & -64 & -16 & 0 \end{vmatrix} = 0 + 0 + 1 \cdot (-1)^7 \begin{vmatrix} 2 & 2 & 1 \\ -1 & 0 & 3 \\ -28 & -64 & -16 \end{vmatrix} $ |
|           | $= - \begin{vmatrix} 2 & 2 & 1 \\ -1 & 0 & 3 \\ 36 & 0 & 16 \end{vmatrix} = -2.(-1)^3 \begin{vmatrix} -1 & 3 \\ 36 & 16 \end{vmatrix} = 2.(-16 - 108) = -248$                                                                                                                                                  |

# 2. 20 points Consider the linear system

$$x+2y-3z = -4$$
$$4x-y+2z = 8$$
$$2x+2y-3z = -3.$$

**<u>Use Cramer's Rule</u>** to find *y*.

Solution: Let us write the system as 
$$A\mathbf{x} = \mathbf{b}$$
 where  $A = \begin{bmatrix} 1 & 2 & -3 \\ 4 & -1 & 2 \\ 2 & 2 & -3 \end{bmatrix}$ ,  $\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$  and  $\mathbf{b} = \begin{bmatrix} -4 \\ 8 \\ -3 \end{bmatrix}$ . If det  $A \neq 0$  we can use Cramer's Rule. Let us calculate the det A.  

$$\begin{vmatrix} 1 & 2 & -3 \\ 4 & -1 & 2 \\ 2 & 2 & -3 \end{vmatrix} = \begin{vmatrix} 1 & 2 & -3 \\ 0 & -9 & 14 \\ 0 & -2 & 3 \end{vmatrix} = \begin{vmatrix} -9 & 14 \\ -2 & 3 \end{vmatrix} = -27 + 28 = 1 \neq 0$$
We can use Cramer's rule to find variable y and  $y = \frac{|A_2|}{|A|}$ . Therefore  

$$|A_2| = \begin{vmatrix} 1 & -4 & -3 \\ 4 & 8 & 2 \\ 2 & -3 & -3 \end{vmatrix} = \begin{vmatrix} 1 & -4 & -3 \\ 0 & 24 & 14 \\ 0 & 5 & 3 \end{vmatrix} = \begin{vmatrix} 24 & 14 \\ 5 & 3 \end{vmatrix} = 72 - 70 = 2$$

$$y = \frac{|A_2|}{|A|} = \frac{2}{1} = 2$$

#### Second Exam / İkinci Arasınav

3. Let *W* be the set of all vectors  $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$  such that x + y + z = 0.

- (a) 7 points Determine whether W is a subspace of  $\mathbb{R}^3$  or not. Verify your answer.
- (b) 7 points If W is a subspace of  $\mathbb{R}^3$ , what is the dimension of W?
- (c) 6 points Write a basis for W.

### Solution:

(a) Let us take the vectors  $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$  and  $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$  such that  $u_1 + u_2 + u_3 = 0$  and  $v_1 + v_2 + v_3 = 0$ . These vectors are in W. 1)  $\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ u_3 + v_3 \end{bmatrix}$ and  $u_1 + v_1 + u_2 + v_2 + u_3 + v_3 = 0$  because of our assumption. That is,  $\mathbf{u} + \mathbf{v}$  is in W.  $\begin{bmatrix} ku_1 \end{bmatrix}$ 

2) 
$$k.\mathbf{u} = \begin{bmatrix} ku_1 \\ ku_2 \\ ku_3 \end{bmatrix}$$
 and  $ku_1 + ku_2 + ku_3 = k(u_1 + u_2 + u_3) = 0$ . Therefore  $k\mathbf{u}$  is in  $\mathbf{W}$ 

That is, *W* is a subspace of  $\mathbb{R}^3$ .

- (b) The system x + y + z = 0 involves 3 unknowns and 1 equation, therefore the system has infinitely many solutions depend on 2 parameters. Therefore dim W = 2.
- (c) W involves vectors such that x + y + z = 0. Let us try to express the vectors in W as the linear combination of the linearly independent vectors. Let us take the variables y and z are free.

$$x = -y - z = -t - p$$
$$y = t$$
$$z = p.$$

Therefore

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -t-p \\ t \\ p \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} t + \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} p$$
  
The set  $\left\{ \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\}$  forms a basis for *W*.

- $p_1(x) = 1 + x + 2x^2$  and  $p_2(x) = 5 x + 4x^2$ .
- (a) 10 points Is p(x) = 2x + 3 in span $\{p_1, p_2\}$ ?
- (b) 10 points Is  $q(x) = 3x^2 + 3$  in span $\{p_1, p_2\}$ ?

### Solution:

If p(x) and q(x) are in span $\{p_1, p_2\}$ , then p(x) can be written as the linear combination of the  $p_1$  and  $p_2$ . Therefore  $p(x) = k_1 p_1(x) + k_2 p_2(x)$  and  $q(x) = c_1 p_1(x) + c_2 p_2(x)$  where  $k_1, k_2, c_1$  and  $c_2$  are scalars.

$$p(x) = k_1 p_1(x) + k_2 p_2(x)$$
  

$$2x + 3 = k_1 + k_1 x + 2k_1 x^2 + 5k_2 - k_2 x + 4k_2 x^2$$
  

$$2x + 3 = (2k_1 + 4k_2)x^2 + (k_1 - k_2)x + (k_1 + 5k_2)$$

and

$$q(x) = c_1 p_1(x) + c_2 p_2(x)$$
  

$$3x^2 + 3 = c_1 + c_1 x + 2c_1 x^2 + 5c_2 - c_2 x + 4c_2 x^2$$
  

$$3x^2 + 3 = (2c_1 + 4c_2)x^2 + (c_1 - c_2)x + (c_1 + 5c_2)$$

The augmented matrix of the systems is as follows

| [ 1 | 5  | 3 | 3 |        | 1 | 5  | 3  | 3  |        | 1 | 5  | 3  | 3 -                                          | ]      | [ 1 | 0 | $\frac{13}{6}$ | $\frac{1}{2}$            |
|-----|----|---|---|--------|---|----|----|----|--------|---|----|----|----------------------------------------------|--------|-----|---|----------------|--------------------------|
| 1   | -1 | 2 | 0 | $\sim$ | 0 | -6 | -1 | -3 | $\sim$ | 0 | -6 | -1 | -3                                           | $\sim$ | 0   | 1 | $\frac{1}{6}$  | $\frac{\overline{1}}{2}$ |
| 2   | 4  | 0 | 3 |        | 0 | -6 | -6 | -3 |        | 0 | 0  | -5 | $\begin{vmatrix} 3 \\ -3 \\ 0 \end{vmatrix}$ |        | 0   | 0 | -5             | õ                        |

(a) According to the third row of the augmented matrix, we obtain  $0k_1 + 0k_2 = -5$ . Therefore the system has no solution. That is, p(x) is not in span $\{p_1, p_2\}$ .

(b) According to the reduced form of the augmented matrix, we obtain  $c_1 = c_2 = \frac{1}{2}$ . Therefore, q(x) can be expressed as the linear combination of the polnomials  $p_1(x)$  and  $p_2(x)$ 

$$q(x) = \frac{1}{2}p_1(x) + \frac{1}{2}p_2(x)$$

That is, q(x) is in span{ $p_1, p_2$ }.

5. 20 points Determine whether the set of matrices

$$A_1 = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}, \qquad A_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \qquad A_3 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad A_4 = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$$

forms a basis for the space of the  $2 \times 2$  matrices  $M_{22}$ .

**Solution:** To decide whether the set  $B = \{A_1, A_2, A_3, A_4\}$  forms a basis for  $M_{22}$  we must answer two question: Is B a linearly independent set? Does B span  $M_{22}$ ? For the first one we must solve the system

$$k_1A_1 + k_2A_2 + k_3A_3 + k_4A_4 = 0$$

and for the second question we solve

$$A = c_1 A_1 + c_2 A_2 + c_3 A_3 + c_4 A_4$$

where  $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ . Let us solve the systems together. Thwe augmented matrix is

Therefore  $k_1 = k_2 = k_3 = k_4 = 0$ , the set *B* is linearly independent. And

$$c_1 = c + d - b$$
$$c_2 = c$$
$$c_3 = a + b - c - d$$
$$c_4 = d$$

 $M_{22}$  can be spanned by the matrices in B.