

Your Name	Your Signature				
Student ID #					
Professor's Name • This exam is closed book.	Your Department				
 Give your answers in exact form (for example π/3 or 5√3 noted in particular problems. Colculators call phones are not allowed. 	b), except as	Problem	Points	Score	
 Calculators, cell phones are not allowed. In order to receive credit, you must show all of your w do not indicate the way in which you solved a problem, y little or no credit for it, even if your answer is correct. 	you may get	1 2	20 20		
work in evaluating any limits, derivatives.			20		
 Place a box around your answer to each question. If you need more room, use the backs of the pages and i 	ndicate that	4	20		
you have done so.		5	20		
 Do not ask the invigilator anything. Use a BLUE ball-point pen to fill the cover sheet. F sure that your exam is complete. 	Please make	Total:	100		

• Time limit is 80 min. Do not write in the table to the right.

Solution:

First we calculate the eigenvalues and the corresponding eigenvectors of A.

$$0 = |A - \lambda I| = \begin{vmatrix} -2 - \lambda & 0 & 0 \\ 0 & 1 - \lambda & 1 \\ 0 & 1 & 1 - \lambda \end{vmatrix} = \lambda (-2 - \lambda)(\lambda - 2)$$

Therefore the eigenvalues of A are $\lambda_1 = -2, \lambda_2 = 0$, and $\lambda_3 = 2$. We calculate the corresponding eigenvectors by solving the equation $(A - \lambda I)\mathbf{v} = \mathbf{0}$.

$$\lambda_{1} = -2 \implies (A+2I)\mathbf{u} = \mathbf{0} \implies \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 1 & 0 & 0 \\ 0 & 1 & 3 & 0 & 0 \end{bmatrix} \implies \mathbf{u} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
$$\lambda_{2} = 0 \implies A\mathbf{v} = \mathbf{0} \implies \begin{bmatrix} -2 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix} \implies \mathbf{v} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$$
$$\lambda_{3} = 2 \implies (A-2I)\mathbf{w} = \mathbf{0} \implies \begin{bmatrix} -4 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \end{bmatrix} \implies \mathbf{w} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$
There are six correct answers to this question. One answer is $P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix}$.

2. Let $A = \begin{bmatrix} 1 & 3 & 4 & 4 \\ 2 & 4 & 6 & 0 \\ -1 & -3 & -4 & 5 \end{bmatrix}$.

- (a) 7 points Find a basis for the column space of A.
- (b) 7 points Find a basis for the null space of A.
- (c) 6 points Find the rank and nullity of A.

Solution: First we row reduce the matrix:

[1	3	4	4		[1	3	4	4		[1	3	4	4]	
2	4	6	0	\sim	0	-2	-2	-8	\sim	0	1	1	4	
$\begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix}$	-3	-4	5		0	0	0	9		0	0	0	1	

(a) The first, second and fourth columns of the reduced form of the matrix contain leading ones. So the first, second and fourth columns of the original matrix, *A*, form a basis for column space of *A*. Therefore

$$\operatorname{Col}(A) = \operatorname{span} \left\{ \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 3\\4\\-3 \end{bmatrix}, \begin{bmatrix} 4\\0\\5 \end{bmatrix} \right\}$$

(b) The null space of A is the solution set of the equation $A\mathbf{x} = \mathbf{0}$. The reduced form of the augmented matrix is

1	3	4	4	0	
0	1	1	4	0	.
0	0	0	1	0 0 0	

Therefore the system has infinitely many solutions depending on 4-3=1 parameter. The general solution is

$$\mathbf{x} = s \begin{bmatrix} -1 \\ -1 \\ 1 \\ 0 \end{bmatrix}.$$

Therefore the vector set $\left\{ \begin{bmatrix} -1\\ -1\\ 1\\ 0 \end{bmatrix} \right\}$ forms a basis for the null space of *A*.

(c) Since the rank of the matrix is equal to the dimension of the column space, we have rank(A) = 3The nullity of A is the dimension of the null space of A. Thus nullity(A) = 1.

- 3. A box containing 10t, 50t, and 100t has 13 banknotes with a total value 830t. The sum of the numbers of 10t valued banknotes and 50[±] valued banknotes is one greater than the number of the 100[±] valued banknotes.
 - (a) 12 points Write a linear system with 3 equations in 3 unknowns for the number of banknotes in the box. [You must state what each of your variables represents.]
 - (b) 8 points How many banknotes of each type are in the box?

Solution:

(a) Let us take the variables as follows

x = the number of 10[†] banknotes,

- y = the number of 50[†] banknotes, and
- z = the number of 100[†] banknotes.

Therefore, the required system of equations is

$$x+y+z = 13$$
$$10x+50y+100z = 830$$
$$y+x = z+1$$

(b) The augmented matrix for the system above is

$$\begin{bmatrix} 1 & 1 & 1 & | & 13 \\ 10 & 50 & 100 & | & 830 \\ 1 & 1 & -1 & | & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & | & 13 \\ 0 & 40 & 90 & | & 700 \\ 0 & 0 & -2 & | & -12 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & | & 13 \\ 0 & 4 & 9 & | & 70 \\ 0 & 0 & 1 & | & 6 \end{bmatrix}$$

When we use backward substitution, we obtain z = 6, y = 4 and x = 3.

_

- 4. (a) 10 points Calculate adj(A) where $A^{-1} = \begin{bmatrix} 10 & -1 & 3 \\ 4 & -1 & 1 \\ 2 & 1 & 0 \end{bmatrix}$
 - (b) 10 points Let A,B,C and D be 3×3 matrices where detA = 2, detB = 5, detC = 8 and detD = 12. Find det $(5A^4B^{-3}C^{-2T}D^T)$.

Solution:

(a) Remember that
$$A^{-1} = \frac{1}{\det A} \operatorname{adj}(A)$$
 and $\det A = \frac{1}{\det A^{-1}}$. Therefore $\operatorname{adj}(A) = \det AA^{-1} = \frac{1}{\det A^{-1}}A^{-1}$.
Since
 $\det A^{-1} = \begin{vmatrix} 10 & -1 & 3 \\ 4 & -1 & 1 \\ 2 & 1 & 0 \end{vmatrix} = \begin{vmatrix} -2 & 2 & 0 \\ 4 & -1 & 1 \\ 2 & 1 & 0 \end{vmatrix} = 0 + 1(-1)^{2+3} \begin{vmatrix} -2 & 2 \\ 2 & 1 \end{vmatrix} + 0 = -6$
we have that
 $\operatorname{adj}(A) = \det AA^{-1} = \frac{1}{\det A^{-1}}A^{-1} = -\frac{1}{6} \begin{bmatrix} 10 & -1 & 3 \\ 4 & -1 & 1 \\ 2 & 1 & 0 \end{bmatrix}$.
(b)
 $\operatorname{det}(5A^4B^{-3}C^{-2T}D^T) = 5^3(\det A)^4(\det B^{-1})^3(\det C^{-T})^2\det D^T$
 $= 5^3(\det A)^4 \frac{1}{(\det B)^3} \frac{1}{(\det C)^2} \det D = 5^3 2^4 \frac{1}{5^3} \frac{1}{8^2} 12 = 3$

5. Consider the bases $B = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3}$ and $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$ for \mathbb{R}^3 where

$$\mathbf{u}_1 = \begin{bmatrix} -3\\0\\-3 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} -3\\2\\-1 \end{bmatrix}, \mathbf{u}_3 = \begin{bmatrix} 1\\6\\-1 \end{bmatrix}, \mathbf{v}_1 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -2\\-1\\3 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} -2\\-3\\1 \end{bmatrix}$$

(a) 8 points Find the transition matrix from B to S.

(b) 6 points Compute the coordinate vector $[\mathbf{w}]_B$ where $\mathbf{w} = \begin{bmatrix} -5\\ 8\\ -5 \end{bmatrix}$.

(c) 6 points Compute the coordinate vector $[\mathbf{w}]_S$ by using transition matrix $P_{B\to S}$.

Solution:

(a) The matrix [S|B] is row equivalent to the matrix $[I|P_{B\to S}]$. Therefore

The transition matrix is $P_{B\to S} = \begin{bmatrix} -9 & -9 & -3 \\ 0 & 1 & 1 \\ -3 & -4 & -4 \end{bmatrix}$

(b) Let us find the coordinates of \mathbf{w} relative to the basis B. We solve the following system

$$\begin{bmatrix} -3 & -3 & 1 & | & -5 \\ 0 & 2 & 6 & | & 8 \\ -3 & -1 & -1 & | & -5 \end{bmatrix} \sim \begin{bmatrix} -3 & -3 & 1 & | & -5 \\ 0 & 1 & 3 & | & 4 \\ 0 & 2 & -2 & | & 0 \end{bmatrix} \sim \begin{bmatrix} -3 & -3 & 1 & | & -5 \\ 0 & 1 & 3 & | & 4 \\ 0 & 0 & -8 & | & -8 \end{bmatrix}$$

Therefore $[\mathbf{w}]_B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

(c) We can find $[\mathbf{w}]_S = P_{B \to S}[\mathbf{w}]_B$. Let us calculate

$$[\mathbf{w}]_{S} = P_{B \to S}[\mathbf{w}]_{B}]$$

$$\Rightarrow [\mathbf{w}]_{S} = \begin{bmatrix} -9 & -9 & -3\\ 0 & 1 & 1\\ -3 & -4 & -4 \end{bmatrix} \begin{bmatrix} 1\\ 1\\ 1\\ 1 \end{bmatrix} = \begin{bmatrix} -21\\ 2\\ -11 \end{bmatrix}$$