


	'İmza		
[
tudent ID # / Öğrenci Numarası			
rofessor's Name / Öğretim Üyesi Your Departmer	nt / Bölüm		
• Give your answers in exact form (for example $\frac{\pi}{3}$ or $5\sqrt{3}$), except as			
noted in particular problems.Calculators, cell phones are not allowed.	Problem	Points	Score
 In order to receive credit, you must show all of your work. If you do not indicate the way in which you solved a problem, you may get 	1	20	
little or no credit for it, even if your answer is correct.	2	20	
• Place a box around your answer to each question.	3	20	
• If you need more room, use the backs of the pages and indicate that you have done so.	4	20	
	5	20	
• Use a BLUE ball-point pen to fill the cover sheet. Please make sure that your exam is complete.	U		
	Total:	100	

Г

Solution:			
The augmented matrix of the system is $\begin{bmatrix} 0 & 2 & 0 & -3 & 1 & 0 \\ -3 & -1 & 1 & 0 & 0 & -1 \\ 6 & 2 & -1 & 2 & -3 & 6 \end{bmatrix}$. Let us find the reduced row echelon			
form of the augmented matrix.			
$\begin{bmatrix} 0 & 2 & 0 & -3 & 1 & & 0 \\ -3 & -1 & 1 & 0 & 0 & & -1 \\ 6 & 2 & -1 & 2 & -3 & & 6 \end{bmatrix} \sim \begin{bmatrix} -3 & -1 & 1 & 0 & 0 & & -1 \\ 0 & 2 & 0 & -3 & 1 & & 0 \\ 6 & 2 & -1 & 2 & -3 & & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} & 0 & 0 & & \frac{1}{3} \\ 0 & 1 & 0 & -\frac{3}{2} & \frac{1}{2} & & 0 \\ 0 & 1 & 0 & -\frac{3}{2} & \frac{1}{2} & & 0 \\ 0 & 0 & 1 & 2 & -3 & & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -\frac{1}{3} & \frac{1}{2} & -\frac{1}{6} & & \frac{1}{3} \\ 0 & 1 & 0 & -\frac{3}{2} & \frac{1}{2} & & 0 \\ 0 & 0 & 1 & 2 & -3 & & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -\frac{1}{3} & \frac{1}{2} & -\frac{1}{6} & & \frac{1}{3} \\ 0 & 1 & 0 & -\frac{3}{2} & \frac{1}{2} & & 0 \\ 0 & 0 & 1 & 2 & -3 & & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & \frac{7}{6} & -\frac{7}{6} & \frac{5}{3} \\ 0 & 1 & 0 & -\frac{3}{2} & \frac{1}{2} & & 0 \\ 0 & 0 & 1 & 2 & -3 & & 4 \end{bmatrix}$			
The system has infinitely many solutions depend on two parameters. Let us take $x_4 = s$ and $x_5 = t$.			
$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \frac{5}{3} - \frac{7}{6}s + \frac{7}{6}t \\ \frac{3}{2}s - \frac{1}{2}t \\ 4 - 2s + 3t \end{bmatrix} = \begin{bmatrix} \frac{5}{3} \\ 0 \\ 4 \end{bmatrix} + \begin{bmatrix} -\frac{7}{6} \\ \frac{3}{2} \\ -2 \end{bmatrix} s + \begin{bmatrix} \frac{7}{6} \\ -\frac{1}{2} \\ 3 \end{bmatrix} t.$			

- 2. 20 points Find for what values of k the system $\begin{array}{l} x+y+kz=1\\ x+ky+z=1\\ kx+y+z=1 \end{array}$ has
 - (a) no solution.
 - (b) infinitely many solutions.
 - (c) a unique solution.

Use augmented matrix of the system.

3. 20 points Suppose that $(I+2A)^{-1} = \begin{bmatrix} -1 & 3\\ 4 & 5 \end{bmatrix}$. Find A.

Solution: Remember that $(A^{-1})^{-1} = A$. Therefore

$$(I+2A)^{-1} = \begin{bmatrix} -1 & 3\\ 4 & 5 \end{bmatrix}$$
$$I+2A = \begin{bmatrix} -1 & 3\\ 4 & 5 \end{bmatrix}^{-1} = \frac{1}{(-1)\cdot 5 - 3\cdot 4} \begin{bmatrix} 5 & -3\\ -4 & -1 \end{bmatrix} = \begin{bmatrix} -\frac{5}{17} & \frac{3}{17}\\ \frac{4}{17} & \frac{1}{17} \end{bmatrix}$$
$$2A = \begin{bmatrix} -\frac{5}{17} & \frac{3}{17}\\ \frac{4}{17} & \frac{1}{17} \end{bmatrix} - I = \begin{bmatrix} -\frac{5}{17} & \frac{3}{17}\\ \frac{4}{17} & \frac{1}{17} \end{bmatrix} - \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -\frac{22}{17} & \frac{3}{17}\\ \frac{4}{17} & -\frac{16}{17} \end{bmatrix}$$
$$A = \frac{1}{2} \begin{bmatrix} -\frac{22}{17} & \frac{3}{17}\\ \frac{4}{17} & -\frac{16}{17} \end{bmatrix} = \begin{bmatrix} -\frac{11}{17} & \frac{3}{34}\\ \frac{2}{17} & -\frac{8}{17} \end{bmatrix}$$

4. 20 points Suppose that
$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = -6$$
. Calculate the $\begin{vmatrix} 3g & 3h & 3i \\ 2a+d & 2b+e & 2c+f \\ d & e & f \end{vmatrix}$.

Solution:

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = (-6) \Rightarrow \begin{vmatrix} g & h & i \\ d & e & f \\ a & b & c \end{vmatrix} = 6 \Rightarrow \begin{vmatrix} g & h & i \\ a & b & c \\ d & e & f \end{vmatrix} = (-6)$$
$$\begin{vmatrix} 3g & 3h & 3i \\ a & b & c \\ d & e & f \end{vmatrix} = (-6).3 \Rightarrow \begin{vmatrix} 3g & 3h & 3i \\ 2a & 2b & 2c \\ d & e & f \end{vmatrix} = (-18).2$$
$$\begin{vmatrix} 3g & 3h & 3i \\ 2a+d & 2b+e & 2c+f \\ d & e & f \end{vmatrix} = (-36)$$

			[2	2	1	0]
5	5. 20 points Evaluate the determinant of the matrix $A =$	Evaluate the determinant of the metric A	-1	0	3	0
э.		4	9	3	1	
			0	-1	5	7

Solution:	
	$ A = \begin{vmatrix} 2 & 2 & 1 & 0 \\ -1 & 0 & 3 & 0 \\ 4 & 9 & 3 & 1 \\ 0 & -1 & 5 & 7 \end{vmatrix} = \begin{vmatrix} 2 & 2 & 1 & 0 \\ -1 & 0 & 3 & 0 \\ 4 & 9 & 3 & 1 \\ -28 & -64 & -16 \end{vmatrix}$ $= (-1) \begin{vmatrix} 2 & 2 & 7 \\ -1 & 0 & 0 \\ -28 & -64 & -16 \end{vmatrix} = (-1) \begin{vmatrix} 2 & 2 & 7 \\ -1 & 0 & 0 \\ -28 & -64 & -100 \end{vmatrix}$ $= (-1)(-1)(-1)^{2+1} \begin{vmatrix} 2 & 7 \\ -64 & -100 \end{vmatrix}$ $= (-1)[2(-100) - 7(-64)]$ $= -248$