Cep telefonunuzu gözetmene teslim ediniz / Deposit your cell phones to invigilator December 9, 2016 [16:00-17:10]MATH215 Second Midterm / MAT215 İkinci Ara Sınav Page 1 of 4

STANDIN'			
Your Name / İsim Soyisim Your Signatu	re / İmza		
tudent ID # / Öğrenci Numarası			
Professor's Name / Öğretim Üyesi Your Departr	nent / Bölüm		
Totessor's Name / Ogretini Oyesi			
• Cive your angulars in event form (for example π or 5 (3) event as			
• Give your answers in exact form (for example $\frac{\pi}{3}$ or $5\sqrt{3}$), except as noted in particular problems.	Probler	n Points	Score
• Calculators, cell phones are not allowed.		20	
 In order to receive credit, you must show all of your work. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct. Place a box around your answer to each question. 		20	
		20	
If you need more room, use the backs of the pages and indicate that	3	20	
you have done so.Use a BLUE ball-point pen to fill the cover sheet. Please make			
sure that your exam is complete.	5	20	
• Time limit is 80 min.	Total:	100	
. (a) 10 points Let V be the set of vectors of the form $\begin{bmatrix} u \\ 1 \\ 0 \end{bmatrix}$ in \mathbb{R}^3 Solution: Suppose that $\mathbf{u} = \begin{bmatrix} u \\ 1 \\ 0 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} v \\ 1 \\ 0 \end{bmatrix}$ are two vec $\mathbf{u} + \mathbf{v} = \begin{bmatrix} u \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} v \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} u + v \\ 2 \\ 0 \end{bmatrix} \notin V = \begin{bmatrix} v \\ 0 \end{bmatrix}$	ctors in <i>V</i> , and <i>k</i> is a so	alar	
			(TD 30 X
(b) 10 points Let W be the set of vectors of the form $\begin{bmatrix} b \\ c \end{bmatrix}$ when	re $c = a - b$ in \mathbb{R}^3 . Is v	V a subspa	ce of \mathbb{R}^3 ? V
Solution: Suppose that the vectors $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_1 - u_2 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} u_1 \\ u_2 \\ u_1 - u_2 \end{bmatrix}$	$= \begin{bmatrix} v_1 \\ v_2 \\ v_1 - v_2 \end{bmatrix} \text{ are in } W,$	and <i>k</i> is a s	calar.
$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 \\ u_2 \\ u_1 - u_2 \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \\ v_1 - v_2 \end{bmatrix} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ u_1 - u_2 + v_1 \end{bmatrix}$ $k\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_1 - u_2 \end{bmatrix}$	$\begin{bmatrix} u_1 + u_2 + u_2 + u_1 + u_2 + u_2 + u_1 + u_2 + u_2 \end{bmatrix} \in W \Rightarrow W \text{ is a}$		
	$\left[1-u_{2}\right]$		

2. 20 points Suppose that $\mathbf{p}_1(x) = 2 - x + 4x^2$, $\mathbf{p}_2(x) = 3 + 6x + 2x^2$, $\mathbf{p}_3(x) = -15x + 8x^2$. Is the set $S = \{\mathbf{p}_1, \mathbf{p}_2, mathbf p_3(x)\}$ a linearly dependent set? If the answer is yes, then find the dependency equation.

Solution: We must find the solution set of the $c_1\mathbf{p}_1 + c_2\mathbf{p}_2 + c_3\mathbf{p}_3 = 0$ to decide the behaviour of the given polynomials. $\begin{bmatrix} 2 & 3 & 0 & | & 0 \\ -1 & 6 & -15 & | & 0 \\ 4 & 2 & 8 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & 15 & -30 & | & 0 \\ -1 & 6 & -15 & | & 0 \\ 0 & 26 & -52 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -6 & 15 & | & 0 \\ 0 & 1 & -2 & | & 0 \\ 0 & 26 & -52 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -6 & 15 & | & 0 \\ 0 & 1 & -2 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$ $c_2 - 2c_3 = 0 \text{ and } c_1 - 6c_2 + 15c_3 = 0 \Rightarrow \mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix} t$ The polynomials are linearly dependent and the dependency equation is $-3\mathbf{p}_1 + 2\mathbf{p}_2 + \mathbf{p}_3 = 0$ by taking t = 1.

3. Suppose that $A = \begin{bmatrix} 1 & 4 & 5 & 2 \\ 2 & 1 & 3 & 0 \\ -1 & 3 & 2 & 2 \end{bmatrix}$.

- (a) 14 points Find a basis for the null space of A.
- (b) 6 points Find the nullity and rank of A.

Solution:
(a)
$$A = \begin{bmatrix} 1 & 4 & 5 & 2 \\ 2 & 1 & 3 & 0 \\ -1 & 3 & 2 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & 5 & 2 \\ 0 & -7 & -7 & -4 \\ 0 & 7 & 7 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & 5 & 2 \\ 0 & 1 & 1 & \frac{4}{7} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

 $\Rightarrow x_2 + x_3 + \frac{4}{7}x_4 = 0 \Rightarrow x_2 = -p - 4k, x_3 = p, x_4 = 7k$
 $\Rightarrow x_1 + 4x_2 + 5x_3 + 2x_4 = 0 \Rightarrow x_1 = -4(-p - 4k) - 5p - 2(7k) = -p + 2k$
Therefore $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -p + 2k \\ -p - 4k \\ p \\ 7k \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ 1 \\ 0 \end{bmatrix} p + \begin{bmatrix} 2 \\ -4 \\ 0 \\ 7 \end{bmatrix} k$
The set $\left\{ \begin{bmatrix} -1 \\ -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ -4 \\ 0 \\ 7 \end{bmatrix} \right\}$ is a basis for the solution space of $A\mathbf{x} = \mathbf{0}$, so it is a basis for the null space of A .
(b) The nullity of A is the dimension of the null space of A . Therefore, $Null(A) = 2$.
 $Null(A) + Rank(A) = The column number of A$
then $Rank(A) = 4 - 2 = 2$.

Cep telefonunuzu gözetmene teslim ediniz / Deposit your cell phones to invigilator December 9, 2016 [16:00-17:10]MATH215 Second Midterm / MAT215 İkinci Ara Sınav Page 3 of 4

4. Let $B = {\mathbf{u}_1, \mathbf{u}_2}$ and $S = {\mathbf{v}_1, \mathbf{v}_2}$ be two bases for \mathbb{R}^2 where $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \mathbf{v}_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$.

(a) 7 points Find the coordinates of $\mathbf{w} = \begin{bmatrix} 3 \\ -3 \end{bmatrix}$ relative to the basis *B*.

- (b) 8 points Find the transition matrix $P_{B\to S}$ from B to S.
- (c) 5 points Find the coordinates of w relative to the basis S by using the transition matrix.

Solution: Let us take $B = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$, $S = \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix}$. (a) The coordinates of $\mathbf{w} = \begin{bmatrix} 3 \\ -3 \end{bmatrix}$ relative to the basis B, $[\mathbf{w}]_B$, is the solution set of $B[\mathbf{w}]_B = \mathbf{w}$. $[\mathbf{w}]_B = B^{-1}\mathbf{w} = \frac{1}{3-4}\begin{bmatrix} 3 & -2 \\ -2 & 1 \end{bmatrix}\begin{bmatrix} 3 \\ -3 \end{bmatrix} = \begin{bmatrix} -15 \\ 9 \end{bmatrix}$ (b) The transition matrix from B to S can be calculated by using $P_{B\to S} = S^{-1}B$. $S^{-1} = \frac{1}{4-3}\begin{bmatrix} 4 & -1 \\ -3 & 1 \end{bmatrix} \Rightarrow P_{B\to S} = S^{-1}B = \begin{bmatrix} 4 & -1 \\ -3 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 5 \\ -1 & -3 \end{bmatrix}$ or we can find the transition matrix by using $[S|B] \sim [I | P_{B\to S}]$. $[S|B] = \begin{bmatrix} 1 & 1 & | & 1 & 2 \\ 3 & 4 & | & 2 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & | & 1 & 2 \\ 0 & 1 & | & -1 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & | & 2 & 5 \\ 0 & 1 & | & -1 & -3 \end{bmatrix} = [I | P_{B\to S}]$ (c) $[\mathbf{w}]_S = P_{B\to S}[\mathbf{w}]_B = \begin{bmatrix} 2 & 5 \\ -1 & -3 \end{bmatrix} \begin{bmatrix} -15 \\ 9 \end{bmatrix} = \begin{bmatrix} 15 \\ -12 \end{bmatrix}$ 5. Suppose that $A = \begin{bmatrix} 3 & -1 & 0 \\ -2 & 4 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

- (a) | 6 points | Find the eigenvalues of A.
- (b) 9 points Find the corresponding eigenvectors of A.
- (c) 5 points Is A diagonalizable? Find a matrix P that diagonalize A, if possible.

(a)
$$|A - \lambda I| = 0 \Rightarrow \begin{vmatrix} 3 - \lambda & -1 & 0 \\ -2 & 4 - \lambda & 1 \\ 0 & 0 & 1 - \lambda \end{vmatrix} = 0$$

 $(1 - \lambda) \begin{vmatrix} 3 - \lambda & -1 \\ -2 & 4 - \lambda \end{vmatrix} = (1 - \lambda) [(3 - \lambda)(4 - \lambda) - 2] = (1 - \lambda)(5 - \lambda)(2 - \lambda) = 0$
The eigenvalues of A are $\lambda_1 = 5, \lambda_2 = 2, \lambda_3 = 1$.

(b) To find the corresponding eigenvectors of A, we solve the homogeneous system $(A - \lambda I)\mathbf{v} = \mathbf{0}$.

$$\lambda_{1} = 5 \Rightarrow (A - 5I)\mathbf{u} = \mathbf{0} \Rightarrow \begin{bmatrix} -2 & -1 & 0 & | & 0 \\ -2 & -1 & 1 & | & 0 \\ 0 & 0 & -4 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 2 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \Rightarrow \mathbf{u} = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}$$
$$\lambda_{2} = 2 \Rightarrow (A - 2I)\mathbf{v} = \mathbf{0} \Rightarrow \begin{bmatrix} 1 & -1 & 0 & | & 0 \\ -2 & 2 & 1 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \Rightarrow \mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
$$\lambda_{3} = 1 \Rightarrow (A + 2I)\mathbf{w} = \mathbf{0} \Rightarrow \begin{bmatrix} 2 & -1 & 0 & | & 0 \\ -2 & 3 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 2 & -1 & 0 & | & 0 \\ 0 & 2 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \Rightarrow \mathbf{w} = \begin{bmatrix} 1 \\ 2 \\ -4 \end{bmatrix}$$
(c)
$$P = \begin{bmatrix} 1 & 1 & 1 \\ -2 & 1 & 2 \\ 0 & 0 & -4 \end{bmatrix}$$