Cep telefonunuzu gözetmene teslim ediniz. Deposit your cell phones to an invigilator. 30 November 2017 [16:00-17:10] MATH215, 2nd Midterm Exam Page 1 of 4

Foren	AME:	Question	Points	Score	
Surn	AME:	1	20		
Student	No:	2	25		
DEPARTM	ENT:	3	25		
Teac	$\label{eq:HER: HER: Interval} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	4	30		
SIGNAT	URE:	Total:	100		
exar part • Calc hes,	$\frac{1}{3} \text{ or } 5\sqrt{3}, \text{ except as noted in it cular problems.}$ $\frac{1}{3} \text{ or } 5\sqrt{3}, \text{ except as noted in it cular problems.}$ $\frac{1}{3} \text{ ulators, mobile phones, smart watcetc.}$ $\frac{1}{3} \text{ vou may get little or no credit for it, even it gour answer is correct.}$ $\frac{1}{3} \text{ vou may get little or no credit for it, even it gour answer is correct.}$ $\frac{1}{3} \text{ vou may get little or no credit for it, even it gour answer is correct.}$	BLUE ball-p heet. Please n complete. write in the ta	nake sure	that your	
•	See that V is a vector space; $\mathbf{A} = \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ is a basis for V ; $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ is a basis for V ; $\mathbf{a}_1 = 4\mathbf{b}_1 - \mathbf{b}_2$; $\mathbf{a}_1 = 4\mathbf{b}_1 - \mathbf{b}_2$; $\mathbf{a}_2 = -\mathbf{b}_1 + \mathbf{b}_2 + \mathbf{b}_3$; $\mathbf{a}_3 = \mathbf{b}_2 - 2\mathbf{b}_3$; and	$+4\mathbf{a}_2+\mathbf{a}_3.$			
(a)	10 points Find the change-of-coordinates matrix from \mathcal{A} to \mathcal{B} .				
	Solution: Note first that $\begin{bmatrix} \mathbf{a}_1 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 4 \\ -1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} \mathbf{a}_2 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} \mathbf{a}_3 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix}$. Hence				
	$P_{\mathcal{A}\to\mathcal{B}} = \underset{\mathcal{B}\leftarrow\mathcal{A}}{P} = \begin{bmatrix} [\mathbf{a}_1]_{\mathcal{B}} & [\mathbf{a}_2]_{\mathcal{B}} & [\mathbf{a}_3]_{\mathcal{B}} \end{bmatrix} = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & -2 \end{bmatrix}.$				
(b) [10 points Find $[\mathbf{x}]_{\mathcal{B}}$				
	Solution: $\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = P_{\mathcal{A} \to \mathcal{B}} \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{A}} = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 1 \end{bmatrix} = \begin{bmatrix} 8 \\ 2 \\ 2 \end{bmatrix}.$				

Cep telefonunuzu gözetmene teslim ediniz. Deposit your cell phones to an invigilator. 30 November 2017 [16:00-17:10] MATH215, 2nd Midterm Exam Page 2 of 4

2. Let $W = \left\{ \begin{bmatrix} 4a + 3b \\ 0 \\ a + b + c \\ c - 2a \end{bmatrix} \middle| a, b, c \in \mathbb{R} \right\}.$ (a) i. <u>5 points</u> Is *W* a subspace of \mathbb{R}^4 ? [You must justify (explain) your answer.] ii. <u>10 points</u> Find a set of vectors that spans *W*. Solution: We can answer parts (i) and (ii) together. Since $\begin{bmatrix} 4a + 3b \\ 0 \\ a + b + c \\ c - 2a \end{bmatrix} = a \begin{bmatrix} 4 \\ 0 \\ 1 \\ -2 \end{bmatrix} + b \begin{bmatrix} 3 \\ 0 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$ we have that $W = \text{span} \left\{ \begin{bmatrix} 4 \\ 0 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \right\}.$ A span of a set of vectors in *V* is always a subspace of *V*. Hence *W* is a subspace of \mathbb{R}^4 .

	(b) 10 points Now let $\mathbf{v}_1 =$	$\begin{bmatrix} 4\\-3\\7 \end{bmatrix}, \mathbf{v}_2 =$	$\begin{bmatrix} 1\\9\\-2 \end{bmatrix}, \mathbf{v}_3 =$	$\begin{bmatrix} 7\\11\\6\end{bmatrix}$	and $H = \operatorname{span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$. Find a basis for H .
--	--	--	--	---	--

Solution:

METHOD 1: Since $4\mathbf{v}_1 + 5\mathbf{v}_2 - 3\mathbf{v}_3 = \mathbf{0}$, we can see that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is not linearly independent. We can remove \mathbf{v}_3 , say, to be left with $\{\mathbf{v}_1, \mathbf{v}_2\}$. Clearly \mathbf{v}_1 and \mathbf{v}_2 are not parallel. Hence $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a basis for H.

METHOD 2: Writing these three vectors as rows of a matrix gives

$$\begin{bmatrix} 4 & -3 & 7 \\ 1 & 9 & -2 \\ 7 & 11 & 6 \end{bmatrix}$$

Row reducing this matrix gives

$$\begin{bmatrix} 1 & 0 & \frac{19}{13} \\ 0 & 1 & -\frac{5}{13} \\ 0 & 0 & 0 \end{bmatrix}$$

Recall that the row space of a matrix is unchanged under row operations. Hence $\begin{cases} 1 \\ 0 \\ \frac{19}{19} \end{cases}$, $\begin{cases} 1 \\ 0 \\ \frac{19}{19} \end{cases}$, $\begin{cases} 1 \\ 0 \\ \frac{19}{19} \end{cases}$

 $\begin{bmatrix} 0\\1\\-\frac{5}{13} \end{bmatrix}$ is a basis for *H*.

Cep telefonunuzu gözetmene teslim ediniz. Deposit your cell phones to an invigilator. 30 November 2017 [16:00-17:10] MATH215, 2nd Midterm Exam Page 3 of 4

	$\left[-2\right]$	5	-1		3	
3. Let $A =$	6	-10	8	and $\mathbf{w} =$	1	
	10	-18	12		1	

[You must justify (explain) your answers. $\operatorname{Col} A =$ "the column space of A". $\operatorname{Nul} A =$ "the null space of A".]

(a) 13 points Is \mathbf{w} in Col A? Why?

Solution: An equivalent question is: "Is $A\mathbf{x} = \mathbf{w}$ consistent?" If we write an augmented matrix, then row reduce it,

$\begin{bmatrix} -2\\ 6\\ 10 \end{bmatrix}$	$5 \\ -10 \\ -18$		1
$\begin{bmatrix} -2\\0\\10 \end{bmatrix}$	$5 \\ 5 \\ -18$	$-1 \\ 5 \\ 12$	$10 \\ -1$
	5 5 7		$\begin{bmatrix} 3\\10\\14 \end{bmatrix}$
	$5 \\ 1 \\ 7$		$\begin{bmatrix} 3\\2\\14 \end{bmatrix}$
-	$ \begin{array}{c} 2 & 5 \\ 1 \\ 0 \end{array} $	-1 1 0	$\begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix}$
$\begin{bmatrix} 1\\0\\0 \end{bmatrix}$	$-rac{5}{2} \\ 1 \\ 0$	$\begin{array}{c} \frac{1}{2} \\ 1 \\ 0 \end{array}$	$\begin{bmatrix} -\frac{3}{2} \\ 2 \\ 0 \end{bmatrix}$
$\begin{bmatrix} 1\\0\\0 \end{bmatrix}$	0 1 0 0	${3 \\ 1 \\ 0 }$	$\begin{bmatrix} \frac{7}{2} \\ 2 \\ 0 \end{bmatrix}$
$v \in Co$	1A		

we can see that $A\mathbf{x} = \mathbf{w}$ is consistent. Hence $\mathbf{w} \in \operatorname{Col} A$.

(b) 12 points Is \mathbf{w} in Nul A? Why?

Solution:

Since

$$A\mathbf{w} = \begin{bmatrix} -2 & 5 & -1\\ 6 & -10 & 8\\ 10 & -18 & 12 \end{bmatrix} \begin{bmatrix} 3\\ 1\\ -1 \end{bmatrix} = \begin{bmatrix} -6+5+1\\ 18-10-8\\ 30-18-12 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix},$$

the answer is "yes, ${\bf w}$ is in $\operatorname{Nul} A".$

Cep telefonunuzu gözetmene teslim ediniz. Deposit your cell phones to an invigilator. 30 November 2017 [16:00-17:10] MATH215, 2nd Midterm Exam Page 4 of 4

$A = \begin{bmatrix} 4 & 8 & -5 & 23 & 3 \\ 3 & 6 & -10 & 26 & -1 \\ 2 & 4 & -5 & 15 & 2 \\ 1 & 2 & 0 & 4 & 5 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 2 & 5 & -3 & 90 \\ 0 & 0 & 1 & -\frac{7}{5} & -13 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$ You may assume that A is row equivalent to B. $\boxed{12 \text{ points}} \text{ Find a basis for Col } A.$
Solution: Since B has leading ones (pivot positions) in its first, third and fifth columns, and since A and B are row equivalent, the first, third and fifth columns of A will give a basis for Col A . Therefore
$\left\{ \begin{bmatrix} 4\\3\\2\\1 \end{bmatrix}, \begin{bmatrix} -5\\-10\\-5\\0 \end{bmatrix}, \begin{bmatrix} 3\\-1\\2\\5 \end{bmatrix} \right\}$
is a basis for $\operatorname{Col} A$.
3 points Find rank (A) .
Solution: $\operatorname{rank}(A) = \dim(\operatorname{Col} A) = (\operatorname{number} \text{ of vectors in a basis for } \operatorname{Col} A) = 3.$
3 points Find nullity $(A) = \dim(\operatorname{Nul} A)$.
Solution: nullity $(A) = ($ number of columns in $A) - rank(A) = 5 - 3 = 2.$
12 points Find a basis for Nul A.
Solution: By (c), our basis must contain 2 vectors. Recall that the null space of a matrix is unchanged under row operations. We can row reduce B to
$C = \begin{bmatrix} 1 & 2 & 0 & 4 & 0 \\ 0 & 0 & 1 & -\frac{7}{5} & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
Solving
$\begin{bmatrix} 0\\0\\0\\0 \end{bmatrix} = 0 = C\mathbf{x} = \begin{bmatrix} x_1 + 2x_2 + 4x_4\\x_3 - \frac{7}{5}x_4\\x_5\\0 \end{bmatrix}$
gives $\mathbf{x} = \begin{bmatrix} -2s - 4t \\ s \\ \frac{7t}{5} \\ t \\ 0 \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -4 \\ 0 \\ \frac{7}{5} \\ 1 \\ 0 \end{bmatrix}.$
Hence $\left\{ \begin{bmatrix} -2\\1\\0\\0\\0\end{bmatrix}, \begin{bmatrix} -4\\0\\\frac{7}{5}\\1\\0\end{bmatrix} \right\}$ is a basis for Nul A.