Cep telefonunuzu gözetmene teslim ediniz. 18 December 2017 [9:00-10:30]

18 De	cember 2017 [9:00-10:	30] N	AATH215, Final Exam		Pag	ie 1 of 4
Forename:				Question	Points	Score
SURNAME:				1	20	
Student No:				2	25	
DEPARTMENT:				3	25	
TEACHER:	□ Neil Course □ V	Vasfi Eldem 🗌 Mehmet	Kavuk 🗌 Hasan Özekes	4	30	
SIGNATURE:				Total:	100	

- The time limit is 90 minutes.
- Give your answers in exact form (for example π/3 or 5√3), except as noted in particular problems.
 Calculators, mobile phones, smart watc-
- In order to receive credit, you must **show all of your work**. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct.
- Place a box around your answer to each

question.

- Use a **BLUE ball-point pen** to fill the cover sheet. Please make sure that your exam is complete.
- Do not write in the table above.

1. 20 points Consider the linear system

hes, etc. are not allowed.

 $\begin{array}{rcl}
x_1 + x_2 &= 3\\ -3x_1 &+ 2x_3 &= 0\\ x_2 - 2x_3 &= 2\\ -3x_1 + x_2 &+ x_4 = 3. \end{array}$

<u>Use Cramer's Rule</u> to find x_1 .

You can check that $\mathbf{x} = \left(\frac{1}{4}, \frac{11}{4}, \frac{3}{8}, 1\right)$ if you wish.

Solution: Since

$$det(A) = \begin{vmatrix} 1 & 1 & 0 & 0 \\ -3 & 0 & 2 & 0 \\ 0 & 1 & -2 & 0 \\ -3 & 2 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 0 \\ -3 & 0 & 2 \\ 0 & 1 & -2 \end{vmatrix} = \begin{vmatrix} 0 & 2 \\ 1 & -2 \end{vmatrix} - \begin{vmatrix} -3 & 2 \\ 0 & -2 \end{vmatrix} = -2 - 6 = -8$$
and

$$det(A_1) = \begin{vmatrix} 3 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 2 & 1 & -2 & 0 \\ 3 & 2 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 3 & 1 & 0 \\ 0 & 0 & 2 \\ 2 & 1 & -2 \end{vmatrix} = -2\begin{vmatrix} 3 & 1 \\ 2 & 1 \end{vmatrix} = -2,$$
we have that

$$x_1 = \frac{det(A_1)}{det(A)} = \frac{-2}{-8} = \frac{1}{4}$$
by Cramer's Rule.

Cep telefonunuzu gözetmene teslim ediniz.Deposit your cell phones to an invigilator.18 December 2017 [9:00-10:30]MATH215, Final ExamPage 2 of 4

2. Let
$$A = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{bmatrix}$$
. The eigenvalues of A are $\lambda = 2$ and $\lambda = 8$.

(a) $\begin{bmatrix} 7 \text{ points} \end{bmatrix}$ Is A diagonalisable? Why?

Solution: Since A is 3×3 but only has two distinct eigenvalues, we must calculate the eigenvectors of A. First let $\lambda = 2$. Since

we have two free variables. Let $x_2 = t$ and $x_3 = s$. Then $x_1 = -x_2 - x_3 = -t - s$. Hence

$$\mathbf{x} = \begin{bmatrix} -t - s \\ t \\ s \end{bmatrix} = s \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} + t \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} = s\mathbf{p}_1 + t\mathbf{p}_2$$

Now consider $\lambda = 8$. Since

$$\mathbf{0} = (\lambda I - A)\mathbf{x} = \begin{bmatrix} \lambda - 4 & -2 & -2 \\ -2 & \lambda - 4 & -2 \\ -2 & -2 & \lambda - 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 & -2 & -2 \\ -2 & 4 & -2 \\ -2 & -2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4x_1 - 2x_2 - 2x_3 \\ -2x_1 + 4x_2 - 2x_3 \\ -2x_1 - 2x_2 + 4x_3 \end{bmatrix}$$
$$\begin{bmatrix} 4 & -2 & -2 \\ -2 & -2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4x_1 - 2x_2 - 2x_3 \\ -2x_1 + 4x_2 - 2x_3 \\ -2x_1 - 2x_2 + 4x_3 \end{bmatrix}$$

and

$$\begin{bmatrix} 4 & -2 & -2 & 0 \\ -2 & 4 & -2 & 0 \\ -2 & -2 & 4 & 0 \end{bmatrix} \sim \begin{bmatrix} 2 & -1 & -1 & 0 \\ -2 & 4 & -2 & 0 \\ -2 & -2 & 4 & 0 \end{bmatrix} \sim \begin{bmatrix} 2 & -1 & -1 & 0 \\ 0 & 3 & -3 & 0 \\ 0 & -3 & 3 & 0 \end{bmatrix} \sim \begin{bmatrix} 2 & -1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

we have only one free variable. Let $x_3 = r$. Then $x_2 = x_3 = r$ and $x_1 = \frac{1}{2}(x_2 + x_3) = r$ also. Hence

$$\mathbf{x} = \begin{bmatrix} r \\ r \\ r \end{bmatrix} = r \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = r\mathbf{p}_3.$$

Finally, A is diagonalisable since $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ is linearly independent.

(b) 18 points If A is diagonalisable, then

- i. find a matrix P which diagonalises A;
 - ii. find P^{-1} ; and
 - iii. calculate $P^{-1}AP$.

Solution:

$$\begin{split} \text{i. } P &= \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \mathbf{p}_3 \end{bmatrix} = \begin{bmatrix} -1 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} . \\ \text{ii. Since} \\ & \begin{bmatrix} -1 & -1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ -1 & -1 & 1 & 1 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & -1 & 2 & 1 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{3} & \frac{2}{3} \end{bmatrix} \\ & \text{we have that } P^{-1} = \begin{bmatrix} -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{bmatrix} \begin{bmatrix} -1 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 8 \end{bmatrix} . \end{split}$$

Cep telefonunuzu gözetmene teslim ediniz. Deposit your cell phones to an invigilator. 18 December 2017 [9:00-10:30] MATH215, Final Exam Page 3 of 4

3. Let $B = \begin{bmatrix} 4 & 2 & 3 \\ -1 & 1 & -3 \\ 2 & 4 & 9 \end{bmatrix}$. The characteristic polynomial of B is $-\lambda^3 + 14\lambda^2 - 57\lambda + 72$. Note that $\lambda = 8$ is an eigenvalue of B.

(a) 5 points Find all of the eigenvalues of B.

Solution: Since we are told that $\lambda = 8$ is an eigenvalue of *B*, we must have that $-\lambda^3 + 14\lambda^2 - 57\lambda + 72 = (\lambda - 8)(a\lambda^2 + b\lambda + c)$ for some $a, b, c \in \mathbb{R}$. We calculate that

 $\begin{aligned} 0 &= -\lambda^{3} + 14\lambda^{2} - 57\lambda + 72 \\ &= (\lambda - 8)(a\lambda^{2} + b\lambda + c) \\ &= a\lambda^{3} + b\lambda^{2} + c\lambda - 8a\lambda^{2} - 8b\lambda - 8c \\ &= a\lambda^{3} + (b - 8a)\lambda^{2} + (c - 8b)\lambda - 8c \\ &= (\lambda - 8)(-\lambda^{2} + 6\lambda - 9) \\ &= -(\lambda - 8)(\lambda^{2} - 6\lambda + 9) \\ &= -(\lambda - 8)(\lambda - 3)(\lambda - 3). \end{aligned}$

It is then clear that the eigenvalues of B are 8 and 3.

(b) 20 points Find bases for the eigenspaces of B.

Solution: First consider $\lambda = 8$. Then

$$\mathbf{0} = (\lambda I - B)\mathbf{x} = \begin{bmatrix} \lambda - 4 & -2 & -3 \\ 1 & \lambda - 1 & 3 \\ -2 & -4 & \lambda - 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 & -2 & -3 \\ 1 & 7 & 3 \\ -2 & -4 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4x_1 - 2x_2 - 3x_3 \\ x_1 + 7x_2 + 3x_3 \\ -2x_1 - 4x_2 - x_3 \end{bmatrix}$$
$$\begin{bmatrix} 4 & -2 & -3 \\ -2 & -4 & -1 \end{bmatrix} \begin{bmatrix} 1 & 7 & 3 & 0 \end{bmatrix} \begin{bmatrix} 1 & 7 & 3 & 0 \end{bmatrix} \begin{bmatrix} 1 & 7 & 3 & 0 \end{bmatrix}$$

Since

$$\begin{bmatrix} 4 & -2 & -3 & 0 \\ 1 & 7 & 3 & 0 \\ -2 & -4 & -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 7 & 3 & 0 \\ 4 & -2 & -3 & 0 \\ -2 & -4 & -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 7 & 3 & 0 \\ 0 & -30 & -15 & 0 \\ 0 & 10 & 5 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 7 & 3 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

we have one free variable. Say $x_3 = 2r$. Then $x_2 = -\frac{1}{2}x_3 = -r$ and $x_1 = -7x_2 - 3x_3 = 7r - 6r = r$. Therefore

$$\mathbf{x} = \begin{bmatrix} r \\ -r \\ 2r \end{bmatrix} = r \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$$

Now consider $\lambda = 3$. Then

$$\mathbf{0} = (\lambda I - B)\mathbf{x} = \begin{bmatrix} \lambda - 4 & -2 & -3\\ 1 & \lambda - 1 & 3\\ -2 & -4 & \lambda - 9 \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix} -1 & -2 & -3\\ 1 & 2 & 3\\ -2 & -4 & -6 \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix} -x_1 - 2x_2 - 3x_3\\ x_1 + 2x_2 + 3x_3\\ -2x_1 - 4x_2 - 6x_3 \end{bmatrix}.$$

Since

$$\begin{bmatrix} -1 & -2 & -3 & 0 \\ 1 & 2 & 3 & 0 \\ -2 & -4 & -6 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

we have two free variables. Let $x_2 = s$ and $x_3 = t$. Then $x_1 = -2x_2 - 3x_3 = -2s - 3t$. Therefore

$$\mathbf{x} = \begin{bmatrix} -2s - 3t \\ s \\ t \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$$

Hence $\left\{ \begin{bmatrix} 1\\-1\\2 \end{bmatrix} \right\}$ and $\left\{ \begin{bmatrix} -2\\1\\0 \end{bmatrix}, \begin{bmatrix} -3\\0\\1 \end{bmatrix} \right\}$ are bases for the eigenspaces corresponding to $\lambda = 8$ and $\lambda = 3$ respectively.

4. (a) 5 points Consider the function $S : \mathbb{R}^2 \to \mathbb{R}^3$, S(x, y) = (x + y, x - y, 1). Is S a linear transformation? You must justify your answer.

Solution: No. All linear transformations map **0** to **0**. Since $S(\mathbf{0}) \neq \mathbf{0}$, we can see that S is not a linear transformation.

(b) Let $T:\mathbb{R}^3\to\mathbb{R}^2$ be a linear transformation satisfying

$$T(\mathbf{e}_1) = (1,3)$$

 $T(\mathbf{e}_2) = (4,-7)$
 $T(\mathbf{e}_3) = (-5,4)$

where $\mathbf{e}_1 = (1, 0, 0)$, $\mathbf{e}_2 = (0, 1, 0)$ and $\mathbf{e}_3 = (0, 0, 1)$. Let $\mathcal{B} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$

i. 7 points Find the standard matrix of T.

Solution: To calculate a standard matrix, we must use the standard bases on \mathbb{R}^2 and \mathbb{R}^3 . We find that

 $[T] = [[T(\mathbf{e}_1)] \quad [T(\mathbf{e}_3)] \quad [T(\mathbf{e}_3)]] = \begin{bmatrix} 1 & 4 & -5 \\ 3 & -7 & 4 \end{bmatrix}.$

ii. 18 points Now let $\mathcal{A} = \{(1,0), (1,1)\}$ be a different basis for \mathbb{R}^2 . Find the matrix for $T : \mathbb{R}^3 \to \mathbb{R}^2$ relative to the bases \mathcal{B} and \mathcal{A} .

Solution: Since

$$T(\mathbf{e}_{1}) = (1,3) = -2(1,0) + 3(1,1)$$

$$T(\mathbf{e}_{2}) = (4,-7) = 11(1,0) - 7(1,1)$$

$$T(\mathbf{e}_{3}) = (-5,4) = -9(1,0) + 4(1,1)$$
we have $[T(\mathbf{e}_{1})]_{\mathcal{A}} = \begin{bmatrix} -2\\3 \end{bmatrix}$, $[T(\mathbf{e}_{2})]_{\mathcal{A}} = \begin{bmatrix} 11\\-7 \end{bmatrix}$ and $[T(\mathbf{e}_{1})]_{\mathcal{A}} = \begin{bmatrix} -9\\4 \end{bmatrix}$. Hence

$$[T]_{\mathcal{A},\mathcal{B}} = \begin{bmatrix} [T(\mathbf{e}_{1})]_{\mathcal{A}} \quad [T(\mathbf{e}_{3})]_{\mathcal{A}} \quad [T(\mathbf{e}_{3})]_{\mathcal{A}} \end{bmatrix} = \begin{bmatrix} -2 & 11 & -9\\3 & -7 & 4 \end{bmatrix}.$$