Cep telefonunuzu gözetmene teslim ediniz / Deposit your cell phones to invigilator1 November 2017 [9:00-10:20]MATH215, 1st Midterm ExamPage 1 of 4

FORENAME:	
SURNAME:	
STUDENT NO:	
DEPARTMENT:	
TEACHER: 🗌 Neil Course 🛛 Vasfi Eldem	Mehmet Kavuk 🛛 Hasan Özekes
SIGNATURE:	

- Give your answers in exact form (for example $\frac{\pi}{3}$ or $5\sqrt{3}$), except as noted in particular problems.
- Calculators, cell phones are not allowed.
- In order to receive credit, you must **show all of your work**. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct.
- Place a box around your answer to each question.
- If you need more room, use the backs of the pages and indicate that you have done so.
- Use a BLUE ball-point pen to fill the cover sheet. Please make sure that your exam is complete.
- Time limit is 80 min.

Do not write in the table to the right.

Solution: $\begin{vmatrix}
1 & 5 & 4 & 3 & 2 \\
0 & 8 & 5 & 9 & 0 \\
0 & 7 & 0 & 0 & 0 \\
3 & 9 & 6 & 5 & 4 \\
0 & 8 & 0 & 6 & 0
\end{vmatrix} = (-7) \begin{vmatrix}
1 & 4 & 3 & 2 \\
0 & 5 & 9 & 0 \\
3 & 6 & 5 & 4 \\
0 & 0 & 6 & 0
\end{vmatrix} = (-7)(-6) \begin{vmatrix}
1 & 4 & 2 \\
0 & 5 & 0 \\
3 & 6 & 4
\end{vmatrix} = (-7)(-6)(+5) \begin{vmatrix}
1 & 2 \\
3 & 4
\end{vmatrix}$ = (-7)(-6)(+5)(4-6) = -420.

Problem	Points	Score
1	25	
2	25	
3	25	
4	25	
Total:	100	

Cep telefonunuzu gözetmene teslim ediniz / Deposit your cell phones to invigilator1 November 2017 [9:00-10:20]MATH215, 1st Midterm ExamPage 2 of 4

25 points Find the inverse of $A = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 0 & -2 \\ 1 & 4 \\ -3 & 4 \end{bmatrix}.$	
Solution:		
	$\begin{bmatrix} 1 & 0 & -2 & 1 & 0 & 0 \\ -3 & 1 & 4 & 0 & 1 & 0 \\ 2 & -3 & 4 & 0 & 0 & 1 \end{bmatrix}$	
$R_2 + 3R_1 \rightarrow R_2$ and $R_3 - 2R_1 \rightarrow R_3$	$\begin{bmatrix} 1 & 0 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 3 & 1 & 0 \\ 0 & -3 & 8 & -2 & 0 & 1 \end{bmatrix}$	
$R_3 + 3R_2 \rightarrow R_3$	$\begin{bmatrix} 1 & 0 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 3 & 1 & 0 \\ 0 & 0 & 2 & 7 & 3 & 1 \end{bmatrix}$	
$\frac{1}{2}R_3 \rightarrow R_3$	$\begin{bmatrix} 1 & 0 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 3 & 1 & 0 \\ 0 & 0 & 1 & \frac{7}{2} & \frac{3}{2} & \frac{1}{2} \end{bmatrix}$	
$R_2 + 2R_3 \rightarrow R_2$	$\begin{bmatrix} 1 & 0 & -2 & 1 & 0 & 0 \\ 0 & 1 & 0 & 10 & 4 & 1 \\ 0 & 0 & 1 & \frac{7}{2} & \frac{3}{2} & \frac{1}{2} \end{bmatrix}$	
$R_1 + 2R_3 \rightarrow R_1$	$\begin{bmatrix} 1 & 0 & 0 & 8 & 3 & 1 \\ 0 & 1 & 0 & 10 & 4 & 1 \\ 0 & 0 & 1 & \frac{7}{2} & \frac{3}{2} & \frac{1}{2} \end{bmatrix}$	
Hence $A^{-1} = \begin{bmatrix} 8 & 3 & 1 \\ 10 & 4 & 1 \\ \frac{7}{2} & \frac{3}{2} & \frac{1}{2} \end{bmatrix}$		

3. 25 points Consider the following linear system

- a. Write an augmented matrix for this linear system.
- b. Put your augmented matrix into reduced row echelon form (RREF).
- c. Find all the solutions (if any) of this linear system. If the linear system does not have any solutions, then you must explain why.

Solution:	
a.	$\begin{bmatrix} 1 & 0 & 0 & -2 & -3 \\ 0 & 2 & 2 & 0 & 0 \\ 0 & 0 & 1 & 3 & 1 \\ -2 & 3 & 2 & 1 & 5 \end{bmatrix}$
b. $R_4 + 2R_1 \rightarrow R_4$	$\begin{bmatrix} 1 & 0 & 0 & -2 & -3 \\ 0 & 2 & 2 & 0 & 0 \\ 0 & 0 & 1 & 3 & 1 \\ 0 & 3 & 2 & -3 & -1 \end{bmatrix}$
$\frac{1}{2}R_2 \rightarrow R_2$	$\begin{bmatrix} 1 & 0 & 0 & -2 & -3 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3 & 1 \\ 0 & 3 & 2 & -3 & -1 \end{bmatrix}$
$R_4 - 3R_2 ightarrow R_4$ $R_4 + R_3 ightarrow R_4$	$\begin{bmatrix} 1 & 0 & 0 & -2 & -3 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3 & 1 \\ 0 & 0 & -1 & -3 & -1 \end{bmatrix}$
$R_4 + R_3 \rightarrow R_4$ $R_2 - R_3 \rightarrow R_2$	$\begin{bmatrix} 1 & 0 & 0 & -2 & -3 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
	$\begin{bmatrix} 1 & 0 & 0 & -2 & -3 \\ 0 & 1 & 0 & -3 & -1 \\ 0 & 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
c. The solution is	$x_1 = 2s - 3$ $x_2 = 3s - 1$ $x_3 = 1 - 3s$ $x_4 = s$
for all $s \in \mathbb{R}$.	

Cep telefonunuzu gözetmene teslim ediniz / Deposit your cell phones to invigilator1 November 2017 [9:00-10:20]MATH215, 1st Midterm ExamPage 4 of 4

4. 25 points

a. If A, B and C are $n \times n$ invertible matrices, does the equation

$$C^{-1}(A+X)B^{-1} = I_n$$

have a solution, *X*? If so, find it.

b. Suppose that	a	b	С		d	е	f		a	b	<i>c</i>
b. Suppose that	d	е	f	= 7. Find	a	b	c	and	2d+a	2e+b	2f+c.

Solution:

a. Yes, this equation does have a solution, X. We calculate that

$$C^{-1}(A+X)B^{-1} = I_n$$

$$CC^{-1}(A+X)B^{-1} = CI_n$$

$$I_n(A+X)B^{-1} = C$$

$$(A+X)B^{-1} = C$$

$$(A+X)B^{-1}B = CB$$

$$(A+X)I_n = CB$$

$$A+X = CB$$

$$X = CB - CB$$

Α

b. First

$$\begin{vmatrix} d & e & f \\ a & b & c \\ g & h & i \end{vmatrix} = -7$$

because swapping two rows multiplies the determinant by -1.

Multiplying a row by a constant k, also multiplies the determinant by k. So

a	b	с		а	b	c
2d	2e	2f	= 2	d	е	f = 14.
8	h	i		g	h	$\begin{vmatrix} c \\ f \\ i \end{vmatrix} = 14.$

Since adding one row to another does not change the determinant, we have

$$\begin{vmatrix} a & b & c \\ 2d+a & 2e+b & 2f+c \\ g & h & i \end{vmatrix} = \begin{vmatrix} a & b & c \\ 2d & 2e & 2f \\ g & h & i \end{vmatrix} = 14$$

also.