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example
π

3
or 5
√

3), except as noted in

particular problems.

• Calculators, mobile phones, smart watc-
hes, etc. are not allowed.

• In order to receive credit, you must show
all of your work. If you do not indicate
the way in which you solved a problem,
you may get little or no credit for it, even

if your answer is correct.

• Place a box around your answer to each

question.

• Use a BLUE ball-point pen to fill the
cover sheet. Please make sure that your
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• Do not write in the table above.

1. (a) 10 points Determine whether the set W =




1
0
−3
2

 ,


0
1
2
−3

 ,

−3
−4
1
6

 ,


1
−3
−8
7


 forms a basis for R4 .

Solution: Let us determine whether W is a linearly independent set.
1 0 −3 1
0 1 −4 −3
−3 2 1 −8
2 −3 6 7

 ∼


1 0 −3 1
0 1 −4 −3
0 2 −8 −5
0 −3 12 5

 ∼


1 0 −3 1
0 1 −4 −3
0 0 0 1
0 0 0 0


W is a linearly dependent set, so it does not form a basis for R4.

(b) 15 points If

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = 3 , then calculate

∣∣∣∣∣∣
g h i

−3d+ 2a −3e+ 2b −3f + 2c
2a 2b 2c

∣∣∣∣∣∣ .

Solution:∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = 3⇒

∣∣∣∣∣∣
g h i
d e f
a b c

∣∣∣∣∣∣ = −3⇒

∣∣∣∣∣∣
g h i
−3d −3e −3f
2a 2b 2c

∣∣∣∣∣∣ = (−3)(2)(−3)⇒

∣∣∣∣∣∣
g h i

−3d+ 2a −3e+ 2b −3f + 2c
2a 2b 2c

∣∣∣∣∣∣ = 18
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2. Let T : R4 → R3 be a linear transformation defined by T



a
b
c
d


 =

 a− b
2a+ b− 2c+ d

6b− 4c− 2d

 .

(a) 5 points Write the matrix representation of T .

Solution:

T



a
b
c
d


 =

 a− b
2a+ b− 2c+ d

6b− 4c− 2d

 =

1 −1 0 0
2 1 −2 1
0 6 −4 −2



a
b
c
d



(b) 7 points Find a basis for the kernel of T .

Solution: 1 −1 0 0 0
2 1 −2 1 0
0 6 −4 −2 0

 ∼
1 −1 0 0 0

0 3 −2 1 0
0 6 −4 −2 0

 ∼
1 −1 0 0 0

0 3 −2 1 0
0 0 0 −4 0



x4 = 0, 3x2 − 2x3 + x4 = 0, x1 − x2 = 0⇒ x =


2
2
3
0

x2

(c) 5 points Find a basis for the image of T .

Solution: The first, second and fourth columns of A forms a basis for Im A
1

2
0

 ,
−1

1
6

 ,
 0
−2
4


(d) 3 points Determine the rank T .

Solution: Rank T =3
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3. (a) 15 points Find the eigenvalues and the corresponding eigenvectors of the matrix A =

[
4 3
−3 4

]
.

Solution:

|A− λI| = 0⇒
∣∣∣∣4− λ 3
−3 4− λ

∣∣∣∣ = 0⇒ (4− λ)2 + 9 = 0⇒ λ1 = 4 + 3i, λ2 = 4− 3i

(A− (4 + 3i)I)v = 0⇒
[
4− (4 + 3i) 3
−3 4− (4 + 3i)

]
=

[
−3i 3
−3 −3i

]
∼
[
−3i 3
−3i 3

]
∼
[
−i 1
0 0

]
⇒ v =

[
1
i

]
The eigenvector corresponding to λ2 = 4− 3i is v̄ =

[
1
−i

]
.

(b) 15 points Find the matrix Ak where A =

[
5 0
2 1

]
.

Solution: Let us use Ak = PDkP−1 to find the result. The eigenvalues of the matrix A are λ1 = 5, λ2 = 1 .

(A− 5I)v = 0⇒
[
0 0 0
2 −4 0

]
⇒ v =

[
2 1

]
(A− I)w = 0⇒

[
4 0
2 0

]
⇒ w =

[
0 1

]
D =

[
5 0
0 1

]
, P =

[
2 0
1 1

]
, P−1 =

1

2

[
1 0
−1 2

]
=

[
1/2 0
−1/2 1

]
Ak = PDkP−1 ⇒ Ak =

[
2 0
1 1

] [
5k 0
0 1k

] [
1/2 0
−1/2 1

]
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4. (a) 10 points Find the corresponding eigenvectors of A =

 3 −2 4
−2 6 2
4 2 3

 with the eigenvalues λ1 = −2 and λ2 = λ3 = 7.

Solution:

λ1 = −2⇒ (A+ 2I)v1 = 0⇒

 5 −2 4 0
−2 8 2 0
4 2 5 0

 ∼
 1 −4 −1 0
−2 8 2 0
4 2 5 0

 ∼
1 −4 −1 0

0 2 1 0
0 0 0 0

⇒ v1 =

 2
1
−2


λ1 = 7⇒ (A− 7I)v2 = 0⇒

−4 −2 4
−2 −1 2
4 2 −4

 ∼
2 1 −2

0 0 0
0 0 0

⇒ v2 =

 1
−2
0

 ,v3 =

0
2
1



The eigenvectors corresponding to λ1 = −2 and λ2 = λ3 = 7 are

 2
1
−2

,

 1
−2
0

 , and

0
2
1

, respectively.

(b) 15 points Find the matrix Q that orthogonally diagonalises A such that A = QDQT

Solution: Let us find orthonormal eigenvectors of A by using Gram Schmidt Process.

u1 = v1 =

 2
1
−2


u2 = v2 −

< v2,u1 >

< u1,u1 >
u1 =

 1
−2
0

− 0

9

 2
1
−2

 =

 1
−2
0


u3 = v3 −

< v3,u1 >

< u1,u1 >
u1 −

< v3,u2 >

< u2,u2 >
u2 =

0
2
1

− 0

9

 2
1
−2

− −4

5

 1
−2
0

 =
1

5

4
2
5


u1 =

u1

||u1||
=

1

3

 2
1
−2


u2 =

u2

||u2||
=

1√
5

 1
−2
0


u3 =

u3

||u3||
=

5

3
√

5

1

5

4
2
5

 =
1

3
√

5

4
2
5


D =

−2 0 0
0 7 0
0 0 7

 , and Q =


2
3

1√
5

4
3
√
5

1
3 − 2√

5
2

3
√
5

−2
3 0 5

3
√
5




