Cep telefonunuzu gözetmene teslim ediniz. 7 November 2018 [16:00-17:10]

MATH215, First Exam

 $Page \ 1 \ of \ 4$

FORENAME:		Question	Points	Score
SURNAME:		1	20	
Student No:		2	25	
Department:		3	25	
TEACHER:	$\hfill Neil Course \hfill Vasfi Eldem \hfill M.Tuba Gülpınar \hfill Hasan Özekes \hfill Vasfi Eldem \hfill M.Tuba Gülpınar \hfill Hasan Özekes \hfill Vasfi Eldem \hfill M.Tuba Gülpınar \hfill Hasan Özekes \hfill M.Tuba Hasan Hasan Özekes \hfill M.Tuba Hasan Hasa$	4	30	
SIGNATURE:		Total:	100	
 The tim Any attem and assisti would resu (0) from the also be tak lations of t Give your 	e limit is 70 minutes. pts at cheating or plagiarizing ig of such actions in any form t in getting an automatic zero e exam. Disciplinary action will en in accordance with the regu- te Council of Higher Education. answers in exact form (for example $\frac{\pi}{3}$ or $5\sqrt{3}$), except as noted in particular problems. • Calculators, mobile phones, smart watches, etc. are not allowed. • In order to receive credit, you must show all of your work. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even • Do not	answer is corre- box around 3 a. BLUE ball-p neet. Please r complete. write in the ta	ect. your answe oint pen nake sure able above.	r to each to fill the that your

1. 20 points Choose h, and k such that and the system has (a) no solution, (b) a unique solution, and (c) infinitely many solutions where $h \neq 0$.

$$hx_1 + kx_3 = 2$$

$$hx_1 + hx_2 + 4x_3 = 4$$

$$hx_2 + 2x_3 = h$$

Solution:	$ \begin{bmatrix} h & 0 & k & 2 \\ h & h & 4 & 4 \\ 0 & h & 2 & h \end{bmatrix} \sim \begin{bmatrix} h & 0 & k & 2 \\ 0 & h & 4 - k & 2 \\ 0 & h & 2 & h \end{bmatrix} \sim \begin{bmatrix} h & 0 & k & 2 \\ 0 & h & 4 - k & 2 \\ 0 & 0 & k - 2 & h - 2 \end{bmatrix} $
If $h \neq 2$ and $k = 2$, then the	system has no solution. $\begin{bmatrix} h & 0 & 2 & 2 \\ 0 & h & 2 & 2 \\ 0 & 0 & 0 & h - 2 \end{bmatrix}$
If $k \neq 2$, then the system has	a unique solution. $\begin{bmatrix} h & 0 & k & 2 \\ 0 & h & 4-k & 2 \\ 0 & 0 & k-2 & h-2 \end{bmatrix}$
If $h = 2$ and $k = 2$, then the	system has infinitely many solutions. $\begin{bmatrix} 2 & 0 & 2 & 2 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

2. (a) 10 points Let
$$H = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x + y + z = 1 \right\}$$
. Determine whether H is a subspace of \mathbb{R}^3 .
Solution: Let c is a scalar and $u = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in H$.
 $\mathbf{u} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in H \Rightarrow x + y + z = 1$
 $c\mathbf{u} = c \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} cx \\ cy \\ cz \end{bmatrix} \Rightarrow cx + cy + cz = c(x + y + z) = c \Rightarrow c\mathbf{u} \notin H$
 H is not a subspace of \mathbb{R}^3 .

(b) 15 points Use cofactor expansion to compute the following determinant.

$$\begin{vmatrix} 4 & 0 & -6 & 4 & -6 \\ 0 & 0 & 3 & 0 & 0 \\ 8 & 3 & -7 & 5 & -7 \\ 0 & 0 & 5 & 2 & -2 \\ 0 & 0 & 9 & -1 & 4 \end{vmatrix}$$

Solution:

$$\begin{vmatrix} 4 & 0 & -6 & 4 & -6 \\ 0 & 0 & 3 & 0 & 0 \\ 8 & 3 & -7 & 5 & -7 \\ 0 & 0 & 5 & 2 & -2 \\ 0 & 0 & 9 & -1 & 4 \end{vmatrix} = 3(-1)^{2+3} \begin{vmatrix} 4 & 0 & 4 & -6 \\ 8 & 3 & 5 & -7 \\ 0 & 0 & 2 & -2 \\ 0 & 0 & -1 & 4 \end{vmatrix}$$
$$= (-3) \begin{bmatrix} 3(-1)^{2+2} \begin{vmatrix} 4 & 4 & -6 \\ 0 & 2 & -2 \\ 0 & -1 & 4 \end{vmatrix} \end{bmatrix}$$
$$= (-9) \begin{bmatrix} 4(-1)^{1+1} \begin{vmatrix} 2 & -2 \\ -1 & 4 \end{vmatrix} \end{bmatrix}$$
$$= (-9)(24) = -216$$

Cep telefonunuzu gözetmene teslim ediniz.Deposit your cell phones to an invigilator.7 November 2018 [16:00-17:10]MATH215, First ExamPage 3 of 4

2	15 points Do the columns of the matrix $A =$		$\begin{bmatrix} 1\\ 1 \end{bmatrix}$	$\frac{4}{4}$	$-2 \\ -2$	$0 \\ -2$	$1 \\ 0$
3. (a)		$\begin{vmatrix} -3 \\ 2 \end{vmatrix}$	$^{-6}_{2}$	$\frac{8}{-6}$	5 1	$\begin{array}{c} 0 \\ 2 \end{array}$	

 $\begin{bmatrix} 0 & 1 \\ -2 & 0 \\ 5 & 0 \\ 1 & 2 \end{bmatrix}$ form a linearly dependent set? If the answer is

yes, find the relationship between them.

Solution:

$$A = \begin{bmatrix} 1 & 4 & -2 & 0 & 1 \\ 1 & 4 & -2 & -2 & 0 \\ -3 & -6 & 8 & 5 & 0 \\ 2 & 2 & -6 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & -2 & 0 & 1 \\ 0 & 0 & 0 & -2 & -1 \\ 0 & 6 & 2 & 5 & 3 \\ 0 & -6 & -2 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & -2 & 0 & 1 \\ 0 & 6 & 2 & 5 & 3 \\ 0 & 0 & 0 & 6 & 3 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 4 & -2 & 0 & 1 \\ 0 & 6 & 2 & 5 & 3 \\ 0 & 0 & 0 & -2 & -1 \\ 0 & 0 & 0 & 6 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & -2 & 0 & 1 \\ 0 & 6 & 2 & 5 & 3 \\ 0 & 0 & 0 & -2 & -1 \\ 0 & 0 & 0 & 6 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & -2 & 0 & 1 \\ 0 & 6 & 2 & 5 & 3 \\ 0 & 0 & 0 & -2 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
$$2c_4 + c_5 = 0 \Rightarrow c_4 = -\frac{1}{2}c_5$$
$$6c_2 + 2c_3 + 5c_4 + 3c_5 = 0 \Rightarrow c_2 = \frac{1}{6}(-2c_3 - 5c_4 - 3c_5) = -\frac{1}{3}c_3 - \frac{1}{12}c_5$$
$$c_1 + 4c_2 - 2c_3 + c_5 = 0 \Rightarrow c_1 = -4c_2 + 2c_3 - c5 \Rightarrow c_1 = \frac{10}{3}c_3 - \frac{2}{3}c_5$$

The columns of A form a linear dependent set. Let us find the relationship between them. Let us take $c_3 = 3$ and $c_5 = 12$, then $c_1 = 2$, $c_2 = -2$ and $c_4 = -6$. Thefore,

$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 \end{bmatrix}$$
$$2\mathbf{a}_1 - 2\mathbf{a}_2 + 3\mathbf{a}_3 - 6\mathbf{a}_4 + 12\mathbf{a}_5 = 0$$

.

(b) 10 points Compute det(2
$$A^3$$
) where $A = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 4 \\ 1 & 3 & 3 \end{bmatrix}$

Solution:

 $\begin{vmatrix} 1 & 0 & 2 \\ 1 & 1 & 4 \\ 1 & 3 & 3 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 3 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & -5 \end{vmatrix} = -5$ $\det(2A^3) = 2^3 (\det A)^3 = 8(-5)^3 = -1000$

Cep telefonunuzu gözetmene teslim ediniz. Deposit your	cell phones to an invigilator.
7 November 2018 [16:00-17:10] MATH215, First E	xamPage 4 of 4
4. (a) 15 points Find the inverse of the matrix $A = \begin{bmatrix} 3 & 0 & 0 \\ -1 & 1 & 1 \\ -3 & 5 & 1 \end{bmatrix}$.	
Solution:	
$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left[\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\sim \begin{bmatrix} 1 & 0 & 0 & & \frac{1}{3} & 0 & 0 \\ 0 & 1 & 1 & & \frac{1}{3} & 1 & 0 \\ 0 & 0 & -4 & & -\frac{2}{3} & -5 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & & \frac{1}{3} & 0 & 0 \\ 0 & 1 & 1 & & \frac{1}{3} & 1 & 0 \\ 0 & 0 & 1 & & \frac{1}{6} & \frac{5}{4} & -\frac{1}{4} \end{bmatrix} \sim \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	$ \begin{array}{c c c} 0 & 0 & \frac{1}{3} & 0 & 0 \\ 1 & 0 & \frac{1}{6} & -\frac{1}{4} & \frac{1}{4} \\ 0 & 1 & \frac{1}{6} & \frac{5}{4} & -\frac{1}{4} \end{array} \right] $
	$A^{-1} = \begin{bmatrix} \frac{1}{3} & 0 & 0\\ \frac{3}{6} & -\frac{1}{4} & \frac{1}{4}\\ \frac{1}{6} & \frac{5}{4} & -\frac{1}{4} \end{bmatrix}$
(b) 15 points Use Cramer's Rule to find the value of x_3 for the system $A\mathbf{x} =$	b where $A = \begin{bmatrix} 2 & -2 & 1 & -1 \\ 1 & 4 & 2 & 2 \\ 0 & -1 & 2 & 0 \\ 1 & 3 & 2 & 2 \end{bmatrix}$ with
det $A = 10$, $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} -1 \\ 3 \\ 0 \\ 2 \end{bmatrix}$.	
Solution:	
$x_3 = \frac{\det A_3}{\det A} = \frac{\begin{vmatrix} 2 & -2 & -1 & -1 \\ 1 & 4 & 3 & 2 \\ 0 & -1 & 0 & 0 \\ 1 & 3 & 2 & 2 \end{vmatrix}}{10} = \frac{(-1)(-1)^{3+2} \begin{vmatrix} 2 & -1 & -1 \\ 1 & 3 & 2 \\ 1 & 2 & 2 \end{vmatrix}}{10} = \frac{\begin{vmatrix} 2 \\ 0 \\ 1 \end{vmatrix}}{10}$	$\frac{\begin{vmatrix} -1 & -1 \\ 1 & 0 \\ 2 & 2 \end{vmatrix}}{10} = \frac{\begin{vmatrix} 2 & -1 \\ 1 & 2 \end{vmatrix}}{10} = \frac{5}{10} = 0.5$