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lations of the Council of Higher Education.

• Give your answers in exact form (for

example
π

3
or 5
√

3), except as noted in

particular problems.

• Calculators, mobile phones, smart watc-
hes, etc. are not allowed.

• In order to receive credit, you must show
all of your work. If you do not indicate
the way in which you solved a problem,
you may get little or no credit for it, even

if your answer is correct.

• Place a box around your answer to each

question.

• Use a BLUE ball-point pen to fill the
cover sheet. Please make sure that your
exam is complete.

• Do not write in the table above.

1. 25 points Find a basis for the space spanned by the vectors




1
0
0
1

 ,


−2
1
−1
1

 ,


6
−1
2
−1

 ,


5
−3
3
−4

 ,


0
3
−1
1


 .

Solution:

A =


1 −2 6 5 0
0 1 −1 −3 3
0 −1 2 3 −1
1 1 −1 −4 1

 ∼


1 −2 6 5 0
0 1 −1 −3 3
0 −1 2 3 −1
0 3 −7 −9 1

 ∼


1 −2 6 5 0
0 1 −1 −3 3
0 0 1 0 2
0 0 −4 0 −8

 ∼


1 −2 6 5 0
0 1 −1 −3 3
0 0 1 0 2
0 0 0 0 0


The first, second, and third columns of A are linearly independent. Therefore,

Span




1
0
0
1

 ,


−2
1
−1
1

 ,


6
−1
2
−1

 ,


5
−3
3
−4

 ,


0
3
−1
1


 = Span




1
0
0
1

 ,


−2
1
−1
1

 ,


6
−1
2
−1
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2. Let A =


1 2 3 6 −3 5
0 5 5 6 −1 10
−2 0 −2 3 −5 −2
−1 1 0 0 0 1

 and B =


1 0 1 0 1 1
0 1 1 0 1 2
0 0 0 1 −1 0
0 0 0 0 0 0

 be row equivalent matrices.

(a) 10 points Find a basis for Nul A .

Solution: The system has infinitely many solutions depend on 6-3=3 parameters.

x4 − x5 = 0⇒ x4 = x5

x2 + x3 + x5 + 2x6 = 0⇒ x2 = −x3 − x5 − 2x6

x1 + x3 + x5 + x6 = 0⇒ x1 = −x3 − x5 − x6

⇒ x =


x1

x2

x3

x4

x5

x6

 =


−x3 − x5 − x6

−x3 − x5 − 2x6

x3

x5

x5

x6

 =


−1
−1
1
0
0
0

x3 +


−1
−1
0
1
1
0

x5 +


−1
−2
0
0
0
1

x6

The set




−1
−1
1
0
0
0

 ,


−1
−1
0
1
1
0

 ,


−1
−2
0
0
0
1




is a basis for Nul A.

(b) 7 points Find a basis for Col A .
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Solution: The first, second and fourth columns of B involve pivots, so the first, second , and fourth columns of A

form a basis for Col A. Hence,




1
0
−2
−1

 ,


2
5
0
1

 ,


6
6
3
0


 forms a basis for Col A

(c) 8 points Find the rank and nullity of A .

Solution: Rank A= dim (Col A)= 3
Nullity = dim (Nul A)=3
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3. Let V =


−1

1
0

 ,

 2
−3
−3

 ,

 1
−3
−5

 and W =


1

2
4

 ,

1
2
3

 ,

2
3
6

 be two bases for R3.

(a) 10 points Find the coordinates of v =

 2
−1
1

 relative to the basis V .

Solution:

v = c1v1 + c2v2 + c3v3 2
−1
1

 = c1

−1
1
0

+ c2

 2
−3
−3

+ c3

 1
−3
−5

⇒
−1 2 1

1 −3 −3
0 −3 −5

c1c2
c3

 =

 2
−1
1


 −1 2 1 2

1 −3 −3 −1
0 −3 −5 1

 ∼
 1 −2 −1 −2

0 1 2 −1
0 −3 −5 1

 ∼
 1 0 3 −4

0 1 2 −1
0 0 1 −2

 ∼
 1 0 0 2

0 1 0 3
0 0 1 −2


[v]V =

 2
3
−2



(b) 10 points Find the change of coordinates matrix P
W←V

from V to W .
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Solution: We can use P
W←V

= W−1V , [W |V ] ∼
[
I| P

W←V

]
or P

W←V
=
[
[v1]W [v2]W [v3]W

]

[W |V ] ∼
[
I| P

W←V

]
⇒

 1 1 2 −1 2 1
2 2 3 1 −3 −3
4 3 6 0 −3 −5

 ∼
 1 1 2 −1 2 1

0 0 −1 3 −7 −5
0 −1 −2 4 −11 −9


∼

 1 1 2 −1 2 1
0 1 2 −4 11 9
0 0 1 −3 7 5

 ∼
 1 0 0 3 −9 −8

0 1 2 −4 11 9
0 0 1 −3 7 5

 ∼
 1 0 0 3 −9 −8

0 1 0 2 −3 −1
0 0 1 −3 7 5


P

W←V
=

 3 −9 −8
2 −3 −1
−3 7 5



(c) 5 points Find the coordinates of v relative to W by using P
W←V

.

Solution:

[v]W = P
W←V

[v]V =

 3 −9 −8
2 −3 −1
−3 7 5

 2
3
−2

 =

−5
−3
5
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4. (a) 10 points Let L : R3 → R4 be a linear transformation defined by L

xy
z

 =


2y + 3z

x + y − 2z
4x + y

3x− y − z

 . Find the matrix

representation of L.

Solution:

L(x) = Ax

L

xy
z

 =


2y + 3z

x + y − 2z
4x + y

3x− y − z

 =


0 2 3
1 1 −2
4 1 0
3 −1 −1


xy
z



(b) 15 points Define T : P2 → R2 by T (p) =

[
p(0)
p(1)

]
. Find a polynomial p ∈ P2 which is a basis for kernel of T .

Solution:

kerT = {p : p ∈ P2 and T (p) = 0}

p(t) = a + bt + ct2 ⇒ T (p(t)) =

[
p(0)
p(1)

]
=

[
0
0

]
⇒
[
p(0)
p(1)

]
=

[
a

a + b + c

]
=

[
0
0

]
a = 0

b + c = 0
⇒ p(t) = −ct + ct2

kerT =
{
p : p(t) =

(
−t + t2

)
c, c ∈ R

}
= Span

{
−t + t2

}
p(t) = −t + t2


