Cep telefonunuzu gözetmene teslim ediniz. Deposit your cell phones to an invigilator. 5 December 2018 [16:00-17:10] MATH215, Second Exam Page 1 of 6

Forename:		Question	Points	Score						
SURNAME:		1	25							
Student No:		2	25							
DEPARTMENT:	NT:									
TEACHER:	TEACHER: Neil Course Vasfi Eldem M.Tuba Gülpınar Hasan Özekes 4 25									
SIGNATURE:		Total:	100							
 The time limit is 70 minutes. Any attempts at cheating or plagiarizing and assisting of such actions in any form would result in getting an automatic zero (0) from the exam. Disciplinary action will also be taken in accordance with the regulations of the Council of Higher Education. Give your answers in exact form (for Example ⁿ/₃ or 5√3), except as noted in particular problems. Calculators, mobile phones, smart watches, etc. are not allowed. In order to receive credit, you must show all of your work. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even Do not write in the table above. 										
1. 25 points Find a basis for the space spanned by the vectors $\left\{ \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} -2\\1\\-1\\1\\1 \end{bmatrix}, \begin{bmatrix} 6\\-1\\2\\-1\\-1 \end{bmatrix}, \begin{bmatrix} 5\\-3\\3\\-4 \end{bmatrix}, \begin{bmatrix} 0\\3\\-1\\1 \end{bmatrix} \right\}.$										
Solutio	1:									
$A = \left[\right]$	$A = \begin{bmatrix} 1 & -2 & 6 & 5 & 0 \\ 0 & 1 & -1 & -3 & 3 \\ 0 & -1 & 2 & 3 & -1 \\ 1 & 1 & -1 & -4 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 6 & 5 & 0 \\ 0 & 1 & -1 & -3 & 3 \\ 0 & -1 & 2 & 3 & -1 \\ 0 & 3 & -7 & -9 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 6 & 5 & 0 \\ 0 & 1 & -1 & -3 & 3 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & -4 & 0 & -8 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 6 & 5 & 0 \\ 0 & 1 & -1 & -3 & 3 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$									
The first, second, and third columns of A are linearly independent. Therefore,										
$\operatorname{Span}\left\{ \begin{bmatrix} 1\\0\\1\\1\end{bmatrix}, \begin{bmatrix} -2\\1\\-1\\1\\1\end{bmatrix}, \begin{bmatrix} 6\\-1\\2\\-1\\1\end{bmatrix}, \begin{bmatrix} 5\\-3\\3\\-4\\-4\end{bmatrix}, \begin{bmatrix} 0\\3\\-1\\1\\1\end{bmatrix} \right\} = \operatorname{Span}\left\{ \begin{bmatrix} 1\\0\\0\\1\\1\end{bmatrix}, \begin{bmatrix} -2\\1\\-1\\1\\1\end{bmatrix}, \begin{bmatrix} 6\\-1\\2\\-1\\2\\-1\end{bmatrix} \right\}$										

Cep telefonunuzu gözetmene teslim ediniz. Deposit your cell phones to an invigilator. 5 December 2018 [16:00-17:10] MATH215, Second Exam Page 2 of 6

2. Let	A =	$\begin{bmatrix} 1\\ 0\\ -2\\ -1 \end{bmatrix}$	$2 \\ 5 \\ 0 \\ 1$	$3 \\ 5 \\ -2 \\ 0$		$-3 \\ -1 \\ -5 \\ 0$	$5\\10\\-2\\1$	and $B =$	$\begin{bmatrix} 1\\0\\0\\0\end{bmatrix}$	0 1 0 0	1 1 0 0	$0 \\ 0 \\ 1 \\ 0$	$\begin{array}{c}1\\1\\-1\\0\end{array}$	$\begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}$	be row equivalent matrices.
(a) 10 points Find a basis for Nul A .															

(b) | 7 points | Find a basis for Col A .

Solution: The first, second and fourth columns of B involve pivots, so the first, second , and fourth columns of A							
form a basis for Col A . Hence,	$\begin{bmatrix} 1\\0\\-2\\-1 \end{bmatrix}, \begin{bmatrix} 2\\-2\\-1\end{bmatrix}$	$\begin{bmatrix} 2\\5\\0\\1 \end{bmatrix}, \begin{bmatrix} 6\\6\\3\\0 \end{bmatrix} \right\}$	forms a basis for Col A				

(c) 8 points Find the rank and nullity of A.

Solution: Rank $A = \dim (\text{Col } A) = 3$ Nullity = dim (Nul A)=3 Cep telefonunuzu gözetmene teslim ediniz. Deposit your cell phones to an invigilator. 5 December 2018 [16:00-17:10] MATH215, Second Exam Page 4 of 6

3. Let
$$V = \left\{ \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \begin{bmatrix} 2\\-3\\-3 \end{bmatrix}, \begin{bmatrix} 1\\-3\\-5 \end{bmatrix} \right\}$$
 and $W = \left\{ \begin{bmatrix} 1\\2\\4 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\3\\6 \end{bmatrix} \right\}$ be two bases for \mathbb{R}^3 .
(a) 10 points Find the coordinates of $\mathbf{v} = \begin{bmatrix} 2\\-1\\1 \end{bmatrix}$ relative to the basis V.

$$\begin{aligned} \text{Solution: We can use } & P_{W \leftarrow V} = W^{-1}V, \, [W|V] \sim \begin{bmatrix} I|_{W \leftarrow V} \end{bmatrix} \text{ or } \begin{array}{c} P_{W \leftarrow V} = \begin{bmatrix} [\mathbf{v}_1]_W & [\mathbf{v}_2]_W & [\mathbf{v}_3]_W \end{bmatrix} \\ & \begin{bmatrix} W|V] \sim \begin{bmatrix} I|_{W \leftarrow V} \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 & 3 \\ 4 & 3 & 6 \end{bmatrix} \begin{array}{c} -1 & 2 & 1 \\ 1 & -3 & -3 \\ 4 & 3 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & -1 \\ 0 & -1 & -2 \end{bmatrix} \begin{array}{c} -1 & 2 & 1 \\ 3 & -7 & -5 \\ 0 & -1 & -2 \end{bmatrix} \\ & \sim \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 2 \\ -4 & 11 & 9 \\ 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ -4 & 11 & 9 \\ 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ -4 & 11 & 9 \\ 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 7 & 5 \end{bmatrix} \\ & \sim \begin{bmatrix} 3 & -9 & -8 \\ 2 & -3 & -1 \\ -3 & 7 & 5 \end{bmatrix} \\ & \qquad P_{W \leftarrow V} = \begin{bmatrix} 3 & -9 & -8 \\ 2 & -3 & -1 \\ -3 & 7 & 5 \end{bmatrix} \end{aligned}$$

(c) 5 points Find the coordinates of **v** relative to W by using $\underset{W \leftarrow V}{P}$.

Solution:

$$[\mathbf{v}]_{W} = \Pr_{W \leftarrow V} [\mathbf{v}]_{V} = \begin{bmatrix} 3 & -9 & -8\\ 2 & -3 & -1\\ -3 & 7 & 5 \end{bmatrix} \begin{bmatrix} 2\\ 3\\ -2 \end{bmatrix} = \begin{bmatrix} -5\\ -3\\ 5 \end{bmatrix}$$

4. (a) 10 points Let $L : \mathbb{R}^3 \to \mathbb{R}^4$ be a linear transformation defined by $L\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} 2y+3z \\ x+y-2z \\ 4x+y \\ 3x-y-z \end{bmatrix}$. Find the matrix

representation of L.

Solution:

$$L(\mathbf{x}) = A\mathbf{x}$$
$$L\begin{pmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 2y + 3z \\ x + y - 2z \\ 4x + y \\ 3x - y - z \end{bmatrix} = \begin{bmatrix} 0 & 2 & 3 \\ 1 & 1 & -2 \\ 4 & 1 & 0 \\ 3 & -1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

(b) 15 points Define $T : \mathbb{P}_2 \to \mathbb{R}^2$ by $T(\mathbf{p}) = \begin{bmatrix} \mathbf{p}(0) \\ \mathbf{p}(1) \end{bmatrix}$. Find a polynomial $\mathbf{p} \in \mathbb{P}_2$ which is a basis for kernel of T.

Solution:

$$\ker T = \{\mathbf{p} : \mathbf{p} \in \mathbb{P}_2 \text{ and } T(\mathbf{p}) = \mathbf{0}\}$$
$$\mathbf{p}(t) = a + bt + ct^2 \Rightarrow T(\mathbf{p}(t)) = \begin{bmatrix} \mathbf{p}(0) \\ \mathbf{p}(1) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} \mathbf{p}(0) \\ \mathbf{p}(1) \end{bmatrix} = \begin{bmatrix} a \\ a + b + c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\begin{pmatrix} a = 0 \\ b + c = 0 \end{pmatrix} \Rightarrow \mathbf{p}(t) = -ct + ct^2$$
$$\ker T = \{\mathbf{p} : \mathbf{p}(t) = (-t + t^2) \ c, c \in \mathbb{R}\} = \operatorname{Span} \{-t + t^2\}$$
$$\mathbf{p}(t) = -t + t^2$$