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Question Points Score

1 25

2 25

3 25

4 25

Total: 100

• The time limit is 75 minutes.
• Any attempts at cheating or plagiarizing

and assisting of such actions in any form
would result in getting an automatic zero
(0) from the exam. Disciplinary action will
also be taken in accordance with the regu-
lations of the Council of Higher Education.

• Give your answers in exact form (for ex-

ample
π

3
or 5
√

3), except as noted in par-

ticular problems.

• Calculators, mobile phones, smart
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• Place a box around your answer to each
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1. (a) 10 points Find the inverse of the matrix B =

1 0 1
1 1 2
1 2 1

 .

Solution:1 0 1 1 0 0
1 1 2 0 1 0
1 2 1 0 0 1

 ∼
1 0 1 1 0 0

0 1 1 −1 1 0
0 2 0 −1 0 1

 ∼
1 0 1 1 0 0

0 1 1 −1 1 0
0 0 −2 1 −2 1

 ∼
1 0 1 1 0 0

0 1 1 −1 1 0
0 0 1 −1/2 1 −1/2


1 0 0 3/2 −1 1/2

0 1 0 −1/2 0 1/2
0 0 1 −1/2 1 −1/2

⇒ B−1 =

 3/2 −1 1/2
−1/2 0 1/2
−1/2 1 −1/2



(b) 15 points Compute detB4, where B =

1 0 1
1 1 2
1 2 1

 by using cofactor expansion or elemantary row operations.

Solution: ∣∣∣∣∣∣
1 0 1
1 1 2
1 2 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 0 1
0 1 1
0 2 0

∣∣∣∣∣∣ = 2(−1)3+2

∣∣∣∣1 1
0 1

∣∣∣∣ = (−2)

detB4 = (detB)4 = (−2)4 = 16
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2. Let T : P3 → P2 be a linear transformation where T (ax3 + bx2 + cx+ d) = (a− b− c)x2 + (2a− d)x+ (b+ c+ d).

(a) 10 points Find the standard matrix (matrix representation) of the linear transformation T .

(b) 15 points Find a basis for the kernel of T .

Solution:

(a)

T



a
b
c
d


 =

a− b− c2a− d
b+ c+ d

 =

1 −1 −1 0
2 0 0 −1
0 1 1 1



a
b
c
d


(b) 1 −1 −1 0 0

2 0 0 −1 0
0 1 1 1 0

 ∼
1 −1 −1 0 0

0 2 2 −1 0
0 1 1 1 0

 ∼
1 −1 −1 0 0

0 1 1 1 0
0 2 2 −1 0

 ∼
1 −1 −1 0 0

0 1 1 1 0
0 0 0 1 0


x4 = 0

x2 + x3 + x4 = 0⇒ x2 = −x3
x1 − x2 − x3 = 0⇒ x1 = 0

⇒ x =


x1
x2
x3
x4

 =


0
−x3
x3
0

 =


0
−1
1
0

x3




0
−1
1
0


forms a basis for kernel of T .
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3. 25 points Let A = {a1,a2,a3} and B = {b1,b2,b3} be bases for the vector space V , and suppose a1 = 4b1 − b2,

a2 = −b1 + b2 + b3, and a3 = b2 − 2b3 .

(a) Find the change of coordinates matrix from A to B .

Solution:

[a1]B =

 4
−1
0

 , [a2]B =

−1
1
1

 , [a3]B =

 0
1
−2

⇒ P =

 4 −1 0
−1 1 1
0 1 −2



(b) Find [x]B for x = 3a1 + 4a2 + a3 .

Solution:

[x]A =

3
4
1

⇒ [x]B = P [x]A =

 4 −1 0
−1 1 1
0 1 −2

3
4
1

 =

8
2
2


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4. 25 points Let A =

4 1 1
1 4 1
1 1 4

 be a matrix whose eigenvalues are λ1 = λ2 = 3, λ3 = 6 .

(a) Find the corresponding eigenvectors of A.

Solution:

(A− 3I)v = 0⇒

1 1 1 0
1 1 1 0
1 1 1 0

 ∼
1 1 1 0

0 0 0 0
0 0 0 0

⇒ v1 =

−1
0
1

 ,v2 =

−1
1
0


(A− 6I)w = 0⇒

−2 1 1 0
1 −2 1 0
1 1 −2 0

 ∼
 1 −2 1 0
−2 1 1 0
1 1 −2 0

 ∼
1 −2 1 0

0 −3 3 0
0 3 −3 0

 ∼
1 −2 1 0

0 1 −1 0
0 0 0 0

⇒ w =

1
1
1



(b) Find the matrices P and D that orthogonally diagonalize the matrix A such that A = PDPT where PT = P−1.

Solution: We must obtain orthonormal eigenvectors of A.

u1 =
1

||v1||
v1 =

− 1√
2

0
1√
2



u2 = v2 −
< v2,u1 >

< u1,u1 >
u1 =

−1
1
0

− 1/
√

2

1

− 1√
2

0
1√
2

 =


−1

2
1

−1

2

⇒ u2 =


− 1√

6
2√
6

− 1√
6



u3 =
1

||w||
w =


1√
3

1√
3

1√
3



P =


− 1√

2
− 1√

6

1√
3

0
2√
6

1√
3

1√
2
− 1√

6

1√
3

 , D =

3 0 0
0 3 0
0 0 6




