Cep telefonunuzu gözetmene teslim ediniz. 4 November 2019 [16:00-17:15]

Deposit your cell phones to an invigilator.

MATH215, First Exam

Page 1 of 4

FORENAME:	Question	Points	Score				
SURNAME:	1	25					
STUDENT NO:	2	25					
	3	25					
DEPARTMENT:	4	25					
eq:teacher: Teacher: Integration of the second state of the teacher of tea	Total:	100					
 SIGNATURE: The time limit is 75 minutes. Any attempts at cheating or plagiarizing and assisting of such actions in any form would result in getting an automatic zero ample π/3 or 5√3), except as noted in particular problems. Calculators, mobile phones, smart watches, etc. are not allowed. if your answer is correct. Place a box around your answer to each question. 							
 (0) from the exam. Disciplinary action will also be taken in accordance with the regulations of the Council of Higher Education. Give your answers in exact form (for ex- (a) the way in which you solved a problem, you may get little or no credit for it, even (b) the way in which you solved a problem, you may get little or no credit for it, even (c) the way in which you solved a problem, you may get little or no credit for it, even (c) the way in which you solved a problem, you may get little or no credit for it, even (c) the way in which you solved a problem, you may get little or no credit for it, even (c) the way in which you solved a problem, you may get little or no credit for it, even 							
1. 25 points For which values of k does the system $\begin{array}{l} x + 2y + 6z = 2\\ y + 2kz = 0\\ kx + 2z = 1\end{array}$ have (a) no solution. (b) infinitely many solutions. (c) a unique solution.							
Solution: Let us transform the augmented matrix to row echelon form. $\begin{bmatrix} 1 & 2 & 6 & 2 \\ 0 & 1 & 2k & 0 \\ k & 0 & 2 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 6 & 2 \\ 0 & 1 & 2k & 0 \\ 0 & -2k & 2 - 6k & 1 - 2k \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 6 & 2 \\ 0 & 1 & 2k & 0 \\ 0 & 0 & 4k^2 - 6k + 2 & 1 - 2k \end{bmatrix} \sim \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$		- 1) 1 -	$\begin{bmatrix} 2\\0\\-2k \end{bmatrix}$				
If $k = 1$, then we obtain $\begin{bmatrix} 1 & 2 & 6 & 2 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$. Therefore, the system has no solution. If $k = \frac{1}{2}$, then we obtain $\begin{bmatrix} 1 & 2 & 6 & 2 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. Therefore, the system has infinitely many solutions. $\begin{bmatrix} 1 & 2 & 6 & 2 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.							
If $k \neq 1$ and $k \neq \frac{1}{2}$, then we obtain $\begin{bmatrix} 1 & 2 & 6 & 2\\ 0 & 1 & 2k & 0\\ 0 & 0 & 1 & -\frac{1}{2(k-1)} \end{bmatrix}$ Therefore, the system have a u	nique soluti	on.					

OLAN GRANERA	Cep telefonunuzu gözetmene teslim ediniz	2. Deposit your cell phones to an inv	vigilator.
	November 2019 [16:00-17:15]	MATH215, First Exam	Page 2 of 4
2. (a)	15 points Calculate the determinant of the matrix $A =$	$= \begin{bmatrix} 1 & 2 & 3 & -1 \\ 0 & 0 & 4 & -2 \\ 3 & -2 & 1 & 1 \\ 2 & 0 & 1 & 1 \end{bmatrix}.$	
	Solution: $\begin{vmatrix} 1 & 2 & 3 & -1 \\ 0 & 0 & 4 & -2 \\ 3 & -2 & 1 & 1 \\ 2 & 0 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 & -1 \\ 0 & 0 & 4 & -2 \\ 4 & 0 & 4 & -2 \\ 4 & 0 & 4 & -2 \\ 2 & 0 & 1 & -2 \\ 1 & 2 & 0 & 1 & -2 \end{vmatrix}$	$ \begin{vmatrix} -1 \\ -2 \\ 0 \\ 1 \end{vmatrix} = 2(-1)^{1+2} \begin{vmatrix} 0 & 4 & -2 \\ 4 & 4 & 0 \\ 2 & 1 & 1 \end{vmatrix} + 0 + 0 + 0 $	
	$= (-2) \begin{vmatrix} 0 & 4 & -2 \\ 0 & 2 & -2 \\ 2 & 1 & 1 \end{vmatrix} = (-2) \left[(2) (2) + (2)$	$(-1)^{3+1} \begin{vmatrix} 4 & -2 \\ 2 & -2 \end{vmatrix} = (-4)(-8+4) = 16$	
	10 points Suppose that $A\mathbf{x} = \mathbf{b}$ where $A = \begin{bmatrix} 1 & 1 & 3 \\ 0 & 2 & 4 \\ 3 & 0 & 1 \\ 2 & 4 & 1 \end{bmatrix}$ rule to find x_2 .	$\begin{bmatrix} -1\\ -2\\ 1\\ 1\\ 1 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 2\\ 0\\ -2\\ 0 \end{bmatrix} \text{ and } \det A = (-2) \text{ . } \mathbf{b} = \begin{bmatrix} 2\\ 0\\ -2\\ 0 \end{bmatrix}$	Jse Cramer's
	Solution: $x_2 = \frac{ A_2 }{ A } = \frac{\begin{vmatrix} 1 \\ 0 \\ 3 \\ 2 \end{vmatrix}}{}$	$\begin{array}{c cccc} 2 & 3 & -1 \\ 0 & 4 & -2 \\ -2 & 1 & 1 \\ \hline 0 & 1 & 1 \\ \hline -2 \end{array} = \frac{16}{-2} = -8 \end{array}$	

Cep telefonunuzu gözetmene teslim ediniz. Deposit your cell phones to an in	0					
4 November 2019 [16:00-17:15] MATH215, First Exam	Page 3 of 4					
3. (a) 10 points Find the adjoint matrix $(AdjA)$ of $A = \begin{bmatrix} 1 & 2 & 6 \\ 0 & 1 & 6 \\ 0 & 0 & 2 \end{bmatrix}$.						
Solution:						
$ C_{11} = (-1)^{1+1} \begin{vmatrix} 1 & 6 \\ 0 & 2 \\ 0 & 6 \\ 0 & 2 \end{vmatrix} = 2 C_{21} = (-1)^{2+1} \begin{vmatrix} 2 & 6 \\ 0 & 2 \end{vmatrix} = -4 C_{31} = (-1)^{3+1} \begin{vmatrix} 2 & 6 \\ 1 & 6 \end{vmatrix} = 6 $ $ C_{12} = (-1)^{1+2} \begin{vmatrix} 0 & 6 \\ 0 & 2 \\ 0 & 2 \end{vmatrix} = 0 C_{22} = (-1)^{2+2} \begin{vmatrix} 1 & 6 \\ 0 & 2 \\ 1 & 2 \end{vmatrix} = 2 C_{32} = (-1)^{3+2} \begin{vmatrix} 1 & 6 \\ 0 & 6 \end{vmatrix} = -6 $ $ C_{13} = (-1)^{1+3} \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix} = 0 C_{23} = (-1)^{2+3} \begin{vmatrix} 1 & 2 \\ 0 & 2 \\ 1 & 2 \\ 0 & 0 \end{vmatrix} = 0 C_{33} = (-1)^{3+3} \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} = 1 $						
$C_{12} = (-1)^{1+2} \begin{vmatrix} 0 & 0 \\ 0 & 2 \end{vmatrix} = 0 \qquad C_{22} = (-1)^{2+2} \begin{vmatrix} 1 & 0 \\ 0 & 2 \end{vmatrix} = 2 \qquad C_{32} = (-1)^{3+2} \begin{vmatrix} 1 & 0 \\ 0 & 6 \end{vmatrix} = -6$						
$C_{13} = (-1)^{1+3} \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix} = 0 \qquad C_{23} = (-1)^{2+3} \begin{vmatrix} 1 & 2 \\ 0 & 0 \end{vmatrix} = 0 \qquad C_{33} = (-1)^{3+3} \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} = 1$						
$AdjA = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}^T = \begin{bmatrix} 2 & 0 & 0 \\ -4 & 2 & 0 \\ 6 & -6 & 1 \end{bmatrix}^T = \begin{bmatrix} 2 & -4 & 6 \\ 0 & 2 & -6 \\ 0 & 0 & 1 \end{bmatrix}$						
(b) 15 points Find the inverse of the matrix $A = \begin{bmatrix} 1 & 2 & 6 \\ 0 & 1 & 6 \\ 0 & 0 & 2 \end{bmatrix}$.						
Solution: First Way: $A^{-1} = \frac{1}{\det A} A dj A = \frac{1}{2} \begin{bmatrix} 2 & -4 & 6 \\ 0 & 2 & -6 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 1 & -3 \\ 0 & 0 & 0 & 5 \end{bmatrix}$						
Second Way:						
$\begin{bmatrix} 1 & 2 & 6 & & 1 & 0 & 0 \\ 0 & 1 & 6 & 0 & 1 & 0 \\ 0 & 0 & 2 & & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -6 & & 1 & -2 & 0 \\ 0 & 1 & 6 & & 0 & 1 & 0 \\ 0 & 0 & 1 & & 0 & 0 & 0.5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & & 1 & -2 & 3 \\ 0 & 1 & 0 & & 0 & 1 & -3 \\ 0 & 0 & 1 & & 0 & 0 & 0.5 \end{bmatrix}$						

4. (a) 10 points Suppose an $n \times n$ matrix A satisfies the equation $A^2 - 2A + I = 0$. Show that $A^3 = 3A - 2I$.

Solution:

$$A^{2} = 2A - I \Rightarrow A^{3} = 2A^{2} - A = 2(2A - I) - A = 3A - 2I$$

(b) 15 points Let A, B and C be 3×3 matrices with det A = -3, det B = 4 and det C = 2. Compute det $(2A^2B^{-2}C^T)$.

$$\det(2A^2B^{-2}C^T) = 2^3(\det A)^2 \frac{1}{(\det B)^2}(\det C) = 8(-3)^2 \frac{1}{4^2} 2 = 9$$