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1. 25 points For which values of k does the system
x + 2y + 6z = 2
y + 2kz = 0
kx + 2z = 1

have

(a) no solution.

(b) infinitely many solutions.

(c) a unique solution.

Solution: Let us transform the augmented matrix to row echelon form.1 2 6 2
0 1 2k 0
k 0 2 1

 ∼
1 2 6 2

0 1 2k 0
0 −2k 2− 6k 1− 2k

 ∼
1 2 6 2

0 1 2k 0
0 0 4k2 − 6k + 2 1− 2k

 ∼
1 2 6 2

0 1 2k 0
0 0 2(2k − 1)(k − 1) 1− 2k



If k = 1, then we obtain

1 2 6 2
0 1 2 0
0 0 0 −1

 . Therefore, the system has no solution.

If k =
1

2
, then we obtain

1 2 6 2
0 1 1 0
0 0 0 0

 . Therefore, the system has infinitely many solutions.

If k 6= 1 and k 6= 1

2
, then we obtain

1 2 6 2
0 1 2k 0

0 0 1 − 1

2(k − 1)

 Therefore, the system have a unique solution.
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2. (a) 15 points Calculate the determinant of the matrix A =


1 2 3 −1
0 0 4 −2
3 −2 1 1
2 0 1 1

 .

Solution: ∣∣∣∣∣∣∣∣
1 2 3 −1
0 0 4 −2
3 −2 1 1
2 0 1 1

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 2 3 −1
0 0 4 −2
4 0 4 0
2 0 1 1

∣∣∣∣∣∣∣∣ = 2(−1)1+2

∣∣∣∣∣∣
0 4 −2
4 4 0
2 1 1

∣∣∣∣∣∣+ 0 + 0 + 0

= (−2)

∣∣∣∣∣∣
0 4 −2
0 2 −2
2 1 1

∣∣∣∣∣∣ = (−2)

[
(2)(−1)3+1

∣∣∣∣4 −2
2 −2

∣∣∣∣] = (−4)(−8 + 4) = 16

(b) 10 points Suppose that Ax = b where A =


1 1 3 −1
0 2 4 −2
3 0 1 1
2 4 1 1

, x =


x1

x2

x3

x4

, b =


2
0
−2
0

 and detA = (−2) . Use Cramer’s

rule to find x2.

Solution:

x2 =
|A2|
|A|

=

∣∣∣∣∣∣∣∣
1 2 3 −1
0 0 4 −2
3 −2 1 1
2 0 1 1

∣∣∣∣∣∣∣∣
−2

=
16

−2
= −8
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3. (a) 10 points Find the adjoint matrix (AdjA) of A =

1 2 6
0 1 6
0 0 2

 .

Solution:

C11 = (−1)1+1

∣∣∣∣1 6
0 2

∣∣∣∣ = 2 C21 = (−1)2+1

∣∣∣∣2 6
0 2

∣∣∣∣ = −4 C31 = (−1)3+1

∣∣∣∣2 6
1 6

∣∣∣∣ = 6

C12 = (−1)1+2

∣∣∣∣0 6
0 2

∣∣∣∣ = 0 C22 = (−1)2+2

∣∣∣∣1 6
0 2

∣∣∣∣ = 2 C32 = (−1)3+2

∣∣∣∣1 6
0 6

∣∣∣∣ = −6

C13 = (−1)1+3

∣∣∣∣0 1
0 0

∣∣∣∣ = 0 C23 = (−1)2+3

∣∣∣∣1 2
0 0

∣∣∣∣ = 0 C33 = (−1)3+3

∣∣∣∣1 2
0 1

∣∣∣∣ = 1

AdjA =

C11 C12 C13

C21 C22 C23

C31 C32 C33

T

=

 2 0 0
−4 2 0
6 −6 1

T

=

2 −4 6
0 2 −6
0 0 1



(b) 15 points Find the inverse of the matrix A =

1 2 6
0 1 6
0 0 2

 .

Solution: First Way:

A−1 =
1

detA
AdjA =

1

2

2 −4 6
0 2 −6
0 0 1

 =

1 −2 3
0 1 −3
0 0 0.5


Second Way:

[A|I] ∼ [I|A−1] 1 2 6 1 0 0
0 1 6 0 1 0
0 0 2 0 0 1

 ∼
 1 0 −6 1 −2 0

0 1 6 0 1 0
0 0 1 0 0 0.5

 ∼
 1 0 0 1 −2 3

0 1 0 0 1 −3
0 0 1 0 0 0.5


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4. (a) 10 points Suppose an n× n matrix A satisfies the equation A2 − 2A + I = 0 . Show that A3 = 3A− 2I .

Solution:
A2 = 2A− I ⇒ A3 = 2A2 −A = 2(2A− I)−A = 3A− 2I

(b) 15 points Let A, B and C be 3× 3 matrices with detA = −3, detB = 4 and detC = 2. Compute det(2A2B−2CT ) .

Solution:

det(2A2B−2CT ) = 23(detA)2
1

(detB)2
(detC) = 8(−3)2

1

42
2 = 9


