
December 2019 [16:00-17:15] MATH215, Second Exam Page 1 of 4
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and assisting of such actions in any form
would result in getting an automatic zero
(0) from the exam. Disciplinary action will
also be taken in accordance with the regu-
lations of the Council of Higher Education.

• Give your answers in exact form (for ex-

ample
π

3
or 5
√

3), except as noted in par-

ticular problems.

• Calculators, mobile phones, smart
watches, etc. are not allowed.

• In order to receive credit, you must show
all of your work. If you do not indicate
the way in which you solved a problem,
you may get little or no credit for it, even

if your answer is correct.

• Place a box around your answer to each

question.

• Use a BLUE ball-point pen to fill the
cover sheet. Please make sure that your
exam is complete.

• Do not write in the table above.

1. (a) 15 points Let W =

{[
x
y

]
: xy ≥ 0

}
. Is W a subspace of R2? Why?

Solution: Let us take u =

[
1
5

]
, v =

[
−3
−3

]
∈W .

u + v =

[
1
5

]
+

[
−3
−3

]
=

[
−2
2

]
(−2)(2) ≤ 0⇒ u + v 6∈W

W is not a subspace of R2

(b) 10 points Give an example of a 5-dimensional vector space and write down a basis of it.

Solution: R5 is a 5-dimensional space and




1
0
0
0
0

 ,


0
1
0
0
0

 ,


0
0
1
0
0

 ,


0
0
0
1
0

 ,


0
0
0
0
1


 is a basis of it.
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2. (a) 15 points Let T be a linear transformation defined by T (x) = Ax where A =

[
1 −5 −7
−3 7 5

]
. Find a vector x whose

image under T is b =

[
−2
2

]
, and determine whether x is unique.

Solution: Let us solve the systemAx = b .[
1 −5 −7 −2
−3 7 5 2

]
∼
[
1 −5 −7 −2
0 −8 −16 −4

]
∼
[
1 −5 −7 −2
0 2 4 1

]
x3is free ⇒ x2 =

1

2
− 2x3

x1 = −2 + 5x2 + 7x3 = −2 + 5(
1

2
− 2x3) + 7x3 =

1

2
− 3x3

x =

x1

x2

x3

 =


1

2
− 3x3

1

2
− 2x3

x3

 =


1

2
1

2
0

+

−3
−2
1

x3

The system has infinitely many solutions depend on on parameter. For example, we may take x =


1

2
1

2
0



(b) 10 points Assume that T : R3 → R2 is a linear transformation and T (e1) =

[
1
3

]
, T (e2) =

[
4
−7

]
, and T (e3) =

[
−5
4

]
,

where e1, e2, e3 are the columns of the 3× 3 identity matrix. Find the standard matrix of T .

Solution:

T =
[
T (e1) T (e2) T (e3)

]
=

[
1 4 −5
3 −7 4

]
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3. (a) 10 points Find a matrix A such that ColA =




2s + 3t
r + s− 2t

4r + s
3r − s− t

 : r, s, t real

 .

Solution: 
2s + 3t

r + s− 2t
4r + s

3r − s− t

 =


0
1
4
3

 r +


2
1
1
−1

 s +


3
−2
0
−1

 t⇒ A =


0 2 3
1 1 −2
4 1 0
3 −1 −1



(b) 15 points The set B =
{

1− t2, t− t2, 2− 2t + t2
}

is a basis for P2 . Find the coordinate vector of p(t) = 3 + t − 6t2

relative to B .

Solution:

[p(t)]B =

c1c2
c3

⇒ 3 + t− 6t2 = c1(1− t2) + c2(t− t2) + c3(2− 2t + t2)

 1 0 2 3
0 1 −2 1
−1 −1 1 −6

 ∼
1 0 2 3

0 1 −2 1
0 −1 3 −3

 ∼
1 0 2 3

0 1 −2 1
0 0 1 −2


c3 = −2, c2 − 2c3 = 1⇒ c2 = −3, c1 + 2c3 = 3⇒ c1 = 7

[p(t)]B =

c1c2
c3

 =

 7
−3
−2


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4. 25 points Let A =


1 3 0 2 −1 1
0 0 1 −3 1 0
0 0 0 1 −2 −3
0 0 0 0 0 0


(a) Find a basis for the null space of A

Solution: Let us solve the system Ax = 0 .

x4 − 2x5 − 3x3 = 0⇒ x4 = 2x5 + 3x6

x3 − 3x4 + x5 = 0⇒ x3 = 3x4 − x5 = 5x5 + 9x6

x1 + 3x2 + 2x4 − x5 + x6 ⇒ x1 = −3x2 − 2x4 + x5 − x6 = −3x2 − 3x5 − 7x6

x =



x1

x2

x3

x4

x5

x6

x7


=


−3x2 − 3x5 − 7x6

x2

5x5 + 9x6

2x5 + 3x6

x5

x6

 =


−3
1
0
0
0
0

x2 +


−3
0
5
2
1
0

x5 +


−7
0
9
3
0
1

x6




−3
1
0
0
0
0

 ,


−3
0
5
2
1
0

 ,


−7
0
9
3
0
1




forms a basis for Nul A.

(b) Find a basis for the column space of A

Solution: The pivot columns of A forms a basis for column space of A. Therefore,




1
0
0
0

 ,


0
1
0
0

 ,


2
−3
1
0


 forms a

basis for Col A.

(c) Determine the nullity and rank of A.

Solution: The nullity of the matris A is dim (Nul A)=3
The rank of the matrix A is dim (Col A)=3.


