

2015.01.08 MAT371 Diferansiyel Denklemler – Final Sınavın Çözümleri N. Course

Soru 1 (Petrol Tank / Benzin Deposu).

English

In an oil refinery, a storage tank contains 8000 litres of petrol¹ that initially contains 50kg of an additive dissolved in it.

In preparation for winter weather, petrol containing 0.25 kg/litre of the additive is pumped into the tank at a rate of 160 litres/minute.

The well-mixed solution is pumped out at a rate of 180 litres/minute.

$T\ddot{u}rkce$

Bir petrol rafinerisindeki bir depoda, başlangıçta içinde 50kg katkı maddesi çözeltilmiş olan 8000 litre benzin bulunmaktadır.

Kış şartlarına hazırlık olarak, içinde 0.25kg/litre katkı maddesi olan benzin 160 litre/dakika hızla depoya pompalanmaktadır. İyice karışmış olan karışım 180 litre/dakika hızla depodan dışarı pompalanmaktadır.

(a) [15p] Write an initial value problem (IVP) for the amount of additive in the tank at time t.

(You must explain why your differential equation is valid.)

(b) [9p] Solve the IVP that you wrote in part (a).

[HINT: Use the integrating factor $\mu(t) = e^{\int p(t)dt}$.]

- (c) [1p] How much additive is in the tank after 400 minutes?
- (a) [15p] Depodaki katkı maddesi miktarı için (t zamanda) bir başlangıç değer problemi (IVP) yazınız.
 (Diferansiyel denkleminizin neden geçerli olduğunu açıklamalısınız.)
- (b) [9p] (a) bölümünde yazmış olduğunuz IVP'yi çözünüz.
- (c) [1p] 400 dakika sonra depoda ne kadar katkı maddesi bulunmaktadır?

¹or "gasoline" in American English

(a) Let t denote time measured in minutes. Let a(t) denote the amount of additive, in kg, in the tank at time t. 3: we must always say which units we are using! We know that a(0) = 50 kg.

Clearly, we have 0.25 kg/litre $\times 160$ litres/minute = 40 kg/minute of additive entering the tank.

Until the tank is empty, the volume of petrol in the tank at time t is

,

$$V(t) = 8000 \text{ litres} + (160 \text{ litres/minute} - 180 \text{ litres/minute}) \times t \text{ minutes}$$
$$= (8000 - 20t) \text{ litres}.$$

Therefore, we have $\frac{a(t) \text{ kg}}{V(t) \text{ litres}} \times 180 \text{ litres/minute} = \frac{180a(t)}{8000-20t} \text{ kg/minute of additive leaving the tank.}$

Hence, our IVP is

$$\begin{cases} \frac{da}{dt} + \frac{9}{400-t}a(t) = 40, \\ a(0) = 50. \end{cases}$$

This IVP is valid for $0 \le t \le 400$.

(b) Our ODE is a linear first order equation, so we use the integrating factor

$$\mu(t) = e^{\int p(t)dt} = e^{\int \frac{9}{400-t}dt}$$
$$= e^{-9\log(400-t)} = (400-t)^{-9}.$$

 So

$$\frac{d}{dt} \left((400-t)^{-9}a \right) = (400-t)^{-9} \frac{da}{dt} + 9(400-t)^{-10}a(t)$$
$$= 40(400-t)^{-9}.$$

Integrating gives

$$(400 - t)^{-9}a = 40 \int (400 - t)^{-9} dt$$
$$= 40 \frac{(400 - t)^{-8}}{-1 \times -8} + C$$
$$= 5(400 - t)^{-8} + C.$$

Therefore

$$a(t) = 5(400 - t) + C(400 - t)^9$$

(c) This part is easy; after 400 minutes the tank will be empty. So the answer is: There will be 0 kg of additive in the tank after 400 minutes.

Soru 2 (Second Order Linear Differential Equations). $\ensuremath{\left[25p\right]}$ Solve

$$25y'' - 20y' + 4y = t + 841\cos t - 7e^{2t}.$$
(1)

First consider the homogeneous equation 25y'' - 20y' + 4y = 0. The characteristic equation is $25r^2 - 20r + 4 = 0$ which has repeated root $r = \frac{2}{5}$. Therefore the general solution of 25y'' - 20y' + 4y = 0 is

$$y(t) = c_1 e^{\frac{2t}{5}} + c_2 t e^{\frac{2t}{5}}$$

Next consider $25r^2 - 20r + 4 = t$. Trying the ansatz Y(t) = At + B, we see that

$$t = 25Y'' - 20Y' + 4Y = 25(0) - 20(A) + 4(At + B) = 4At + (-20A + 4B).$$

We must choose $A = \frac{1}{4}$ and $B = \frac{5}{4}$. Hence

$$Y(t) = \frac{t}{4} + \frac{5}{4}.$$

Now consider $25y'' - 20y' + 4y = 841 \cos t$. We try the ansatz $Y(t) = A \cos t + B \sin t$ and find that

$$841 \cos t = 25Y'' - 20Y' + 4Y = 25(-A\cos t - B\sin t) - 20(B\cos t - A\sin t) + 4(A\cos t + B\sin t) = [-21A - 20B]\cos t + [-21B + 20A]\sin t$$

Thus, we need A = -21 and B = -20. Hence

$$Y(t) = -21\cos t - 20\sin t$$

Next consider $25y'' - 20y' + 4y = -7e^{2t}$. We try the ansatz $Y(t) = Ae^{2t}$ and we find that

$$-7e^{2t} = 25Y'' - 20Y' + 4Y$$

= $25(4Ae^{2t}) - 20(2Ae^{2t}) + 4(Ae^{2t})$
= $64Ae^{2t}$.

So, we need to choose $A = -\frac{7}{64}$. Hence

$$Y(t) = -\frac{7}{64}e^{2t}.$$

Finally we add these 4 solutions together. Therefore, the general solution to the ODE is

$$y(t) = c_1 e^{\frac{2t}{5}} + c_2 t e^{\frac{2t}{5}} + \frac{t}{4} + \frac{5}{4} - 21\cos t - 20\sin t - \frac{7}{64}e^{2t}.$$

Soru 3 (Reduction of Order). Consider

$$x^{2}\frac{d^{2}y}{dx^{2}} + 3x\frac{dy}{dx} + y = 0, \qquad x > 0.$$
 (2)

(a) [2p] Show that $y_1(x) = x^{-1}$ is a solution of (2).

(b) [17p] Using the method of reduction of order, find a second solution $y_2(x)$ of (2). [HINT: Start with $y_2(x) = v(x)y_1(x)$.]

As per the hint, we start with $y_2(x) = v(x)x^{-1}$. Then $y'_2 = v'x^{-1} - vx^{-2}$ and $y''_2 = v''x^{-1} - 2v'x^{-2} + 2vx^{-3}$. Putting these into the differential equation, we get $\begin{array}{l} 0 = x^2y''_2 + 3xy'_2 + y_2 \\ = (xv'' - 2v' + 2vx^{-1}) + (3v' - 3vx^{-1}) + vx^{-1} \\ = xv'' + v' \\ = xu' + u \end{array}$ where u = v'. We must solve $x\frac{du}{dx} + u = 0$. Rearranging gives $\frac{du}{u} = -\frac{dx}{x}$. Integrating gives $\log |u| = -\log |x| + c$. Rearranging then gives $u = Cx^{-1}$ for some constant C. Next we integrate to find $v(x) = \int u(x)dx = C\log x + c$. For simplicity, choose c = 0 and C = 1 to get $v(x) = \log x$. Then $y_2(x) = v(x)x^{-1} = x^{-1}\log x$.

(c) [2p] Check that **your** $y_2(x)$ is a solution of (2).

If $y_2(x) = x^{-1} \log x$, then $x^2 y_2'' + 3x y_2' + y_2 = x^2 (-2x^{-3} + 2x^{-3} \log x - x^{-3}) + 3x (x^{-2} - x^{-2} \log x) + (x^{-1} \log x)$ $= -2x^{-1} + 2x^{-1} \log x - x^{-1} + 3x^{-1} - 3x^{-1} \log x + x^{-1} \log x$ = 0.

(d) [4p] Show that $y_1(x) = x^{-1}$ and **your** y_2 are linearly independent.

We calculate the Wronskian $W(y_1, y_2)(x) = \begin{pmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{pmatrix} = \begin{pmatrix} x^{-1} & x^{-1} \log x \\ -x^{-2} & x^{-2} - x^{-2} \log x \end{pmatrix} = x^{-3} \neq 0.$

Therefore y_1 and y_2 are linearly independent.

Soru 4 (Systems of Equations).

(a) [13p] Solve

$$\mathbf{x}' = \begin{pmatrix} \frac{5}{4} & \frac{3}{4} \\ \\ \frac{3}{4} & \frac{5}{4} \end{pmatrix} \mathbf{x}, \qquad \mathbf{x}(0) = \begin{pmatrix} 5 \\ 4 \end{pmatrix}.$$

/

The eigenvalues of
$$\begin{pmatrix} \frac{5}{4} & \frac{3}{4} \\ \frac{3}{4} & \frac{5}{4} \end{pmatrix}$$
 are $r_1 = \frac{1}{2}$ and $r_2 = 2$. The eigenvectors are $\xi^{(1)} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
and $\xi^{(2)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
Therefore, the general solution of $\mathbf{x}' = \begin{pmatrix} \frac{5}{4} & \frac{3}{4} \\ \frac{3}{4} & \frac{5}{4} \end{pmatrix} \mathbf{x}$ is
 $\mathbf{x}(t) = c_1 e^{\frac{t}{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + c_2 e^{2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
Finally, we use the initial condition to calculate that
 $\begin{pmatrix} 5 \\ 4 \end{pmatrix} = \mathbf{x}(0) = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} c_1 + c_2 \\ c_2 - c_1 \end{pmatrix}$
which tells us that $c_1 = \frac{1}{2}$ and $c_2 = \frac{9}{2}$. Thus, the answer to this question is
 $\mathbf{x}(t) = \frac{1}{2}e^{\frac{t}{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \frac{9}{2}e^{2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

(iv) Saddle

Let $A = \begin{pmatrix} 3 & 5 \\ 5 & 3 \end{pmatrix}$. The determinant of A is -16 and the trace of A is 6. The eigenvalues of A are $r_1 = 8$ and $r_2 = -2$. The corresponding eigenvectors of A are $\xi^{(1)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\xi^{(2)} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ respectively.

(v) Saddle

(b) [2p] Which of the graphs (above) is the phase plot of the equation $\mathbf{x}' = A\mathbf{x}$?

(vi) Unstable node

	[Mark 🖌 or	ie box onl	y.] i)	(ii)		(;;;;)	(iv)		$\left(\mathbf{v}\right)$		ri)		
(c)	[10p] Justi	fy (expla	ain) you	(II)	er to pa	(111) rt (b).)			1)		
	Since one phase plo	e eigenva ot must	alue is p be eithe	positive r (iv) or	and on (v) .	e is neg	ative, w	e must l	have a s	saddle p	oint. S	o the	
	The phase plot must also have straight lines in the directions of the eigenvectors. So it must be (v).												
\mathbf{Sor}	u 5 (Bern	oulli Di	fferentia	l Equat	ion). C	onsider	the diffe	erential	equation	n			
					$rac{dy}{dt}$	-y = -	$-y^2$.					(3)	
(a)) [1p] Wha	at is the	order o	f (3)?									
	5t	h order		2nd or	der	3rd	l order	✓ 1	st orde	r	99th o	order	
(b)) [1p] Is (3) linear	or non-	linear?									
(c)) [10p] Dra	aw a dire	ection fi	eld for ([] line (3).	ear [√ non-	linear					
	X				X	2	X						
		X	X	X	X			X	X	X	X		
	-	-	->	-	->	-1	-	-	-	-	-		
	-	-	-	-	-		-	-	-	-	-		
		-2		-1				1		2			
			×	\mathbf{X}	\mathbf{X}		X	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}		
	X	X				-1	X	X		X			
	V	V	¥	¥		-2		¥	¥	¥	¥		
	V	V	V	V	V	¥	¥	V	V		V		
	L					da							

 $\frac{dy}{dt} - y = -y^2 \tag{3}$

Define $u(t) = \frac{1}{y(t)}$.

(d) [5p] Show that

$$\frac{du}{dt} + u = 1 \tag{4}$$

Since

$$\frac{du}{dt} = \frac{d}{dt} \left(\frac{1}{y}\right) = \frac{dy}{dt} \frac{d}{dy} \left(\frac{1}{y}\right) = \frac{dy}{dt} \left(-y^{-2}\right)$$

we have that

$$u' + u = -y^{-2}y' + y^{-1} = -y^{-2}(y' - y) = -y^{-2}(-y^{2}) = 1$$

(e) [5p] Solve (4).

A simple linear equation: We use the integrating factor $\mu(t) = e^t$ to see that

 $(e^t u)' = e^t u' + e^t u = e^t.$

Integrating and rearranging, we have that

$$e^t u = e^t + C$$
$$u(t) = 1 + Ce^{-t}.$$

(f) [3p] Now solve

$$\begin{cases} \frac{dy}{dt} - y = -y^2\\ y(0) = 2. \end{cases}$$

The general solution to $y' - y = -y^2$ is

$$y(t) = \frac{1}{u(t)} = \frac{1}{1 + Ce^{-t}}.$$

Using the initial condition, we find that $2 = \frac{1}{1+C}$ which implies that $C = -\frac{1}{2}$. Therefore

$$y(t) = \frac{1}{1 - \frac{1}{2}e^{-t}} = \frac{2}{2 - e^{-t}}.$$