

2015–16 MAT372 K.T.D.D. – Ödev 2 N. Course

SON TESLİM TARİHİ: Çarşamba 24 Şubat 2016 saat 12:00'e kadar.

Egzersiz 4.

- (a) [15p] Show that $u(x, y) = f(e^{-x}y)$ is a solution of $u_x + yu_y = 0$, for any differentiable function f.
- (b) [25p] Show that

$$\begin{cases} u_x + yu_y = 0\\ u(x,0) = 1 \end{cases}$$

has infinitely many solutions.

Egzersiz 5 (Classification). $[6 \times 10p]$ Classify each of the following as hyperbolic, parabolic or elliptic at every point (x, y) of the domain. The first one is done for you.

- (ω) $2u_{xx} xu_{yy} = 0$, domain= \mathbb{R}^2 . Solution: Since A = 2, B = 0 and C = -x, if follows that $\Delta = B^2 - 4AC = 8x$. Therefore the PDE is hyperbolic for x > 0, parabolic for x = 0 and elliptic for x < 0.
- (a) $xu_{xx} u_{yy} = x^2$, domain = \mathbb{R}^2 ;
- (b) $x^2 u_{xx} 2xy u_{xy} + y^2 u_{yy} = e^x$, domain = \mathbb{R}^2 ;
- (c) $e^x u_{xx} e^y u_{yy} = u$, domain = \mathbb{R}^2 ;
- (d) $xu_{xx} + u_{xy} u_{yy} = 0$, domain= { $(x, y) \in \mathbb{R}^2 : x \le 0$ };
- (e) $y^2 u_{xx} 3xy u_{xy} + x^2 u_{yy} + xy u_x + y^2 u_y = 0$, domain = \mathbb{R}^2 ;
- (f) $\frac{1}{4}u_{xx} + (\cos x)u_{xy} + (\frac{1}{2}\cos(2x) + 1)u_{yy} = \cos y$, domain = \mathbb{R}^2 .

Ödev 1'in çözümleri

- 1. (a) Third order, (b) Second order, (c) Fifth order, (d) Second order, (e) Second order.
- (a) Linear, nonhomogeneous, (b) Linear, nonhomogeneous, (c) Quasilinear, nonhomogeneous, (d) Nonlinear, nonhomogeneous, (e) Linear, nonhomogeneous (f) Quasilinear, homogeneous, (g) Nonlinear, nonhomogeneous, (h) Quasilinear, homogeneous, (j) Linear, homogeneous.
- 3. $x^2 u_{xx} y^2 u_{yy} = x^2 \left(y^2 F^{\prime\prime} + \frac{y^2}{x^3} G^{\prime\prime} \right) y^2 \left(x^2 F^{\prime\prime} + \frac{1}{x} G^{\prime\prime} \right) = 0.$