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Question 1 (Fourier Transforms). Consider the Wave Equation:
utt − c2uxx = 0 −∞ < x < ∞, 0 < t < ∞
u(x, 0) = f(x)

ut(x, 0) = 0.

(1)

(a) [5 pts] If F denotes the Fourier Transform operator with respect to x, show that

F
[
∂u

∂t

]
=

∂

∂t
F [u] and F

[
∂u

∂x

]
= iωF [u].

F
[
∂u

∂t

]
(ω, t) =

1

2π

∫ ∞

−∞

∂u

∂t
(x, t)e−iωxdx =

∂

∂t

(
1

2π

∫ ∞

−∞
u(x, t)e−iωxdx

)
=

∂

∂t
F [u](ω, t)

and

F
[
∂u

∂x

]
(ω, t) =

1

2π

∫ ∞

−∞

∂u

∂x
(x, t)e−iωxdx = − 1

2π

∫ ∞

−∞
u(x, t)

∂

∂x

(
e−iωx

)
dx

=
iω

2π

∫ ∞

−∞
u(x, t)e−iωxdx = iωF [u](ω, t)

by integration by parts.

(b) [2 pts] Deduce that

F
[
∂2u

∂t2

]
=

∂2

∂t2
F [u] and F

[
∂2u

∂x2

]
= −ω2F [u].

F
[
∂2u

∂t2

]
=

∂

∂t
F
[
∂u

∂t

]
=

∂2

∂t2
F [u],

and

F
[
∂2u

∂x2

]
= iωF

[
∂u

∂x

]
= (iω)2F [u] = −ω2F [u].

(c) [5 pts] Let U = F [u] and F = F [f ]. Use the formulae in part (b) to take Fourier Transforms
of equation (1).


Utt + c2ω2U = 0

U(ω, 0) = F (ω)

Ut(ω, 0) = 0
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(d) [5 pts] Solve the boundary value problem for U [that you wrote in part (c)] and show that

U(ω, t) =
1

2
F (ω)

(
eicωt + e−icωt

)
.

[HINT: cos z = 1
2 (e

iz + e−iz).]

The general solution of Utt + c2ω2U = 0 is U(ω, t) = A(ω) cos cωt+B(ω) sin cωt).
Then

0 = Ut(ω, t) = −cωA(ω) sin cω0 + cωB(ω) cos cω0 = −cωB(ω) =⇒ B(ω) = 0 ∀ω ∈ R,

and
F (ω) = U(ω, 0) = A(ω) cos cω0 = A(ω).

So

U(ω, t) = F (ω) cos cωt = F (ω)

(
eicωt + e−icωt

2

)
.

(e) [8 pts] Use the Inverse Fourier Transform, F−1, to show that

u(x, t) =
1

2

(
f(x+ ct) + f(x− ct)

)
.

u(x, t) = F−1[U ](x, t)

=

∫ ∞

−∞
U(ω, t)eiωxdω

=
1

2

∫ ∞

−∞
F (ω)

(
eicωt + e−icωt

)
eiωxdω

=
1

2

∫ ∞

−∞
F (ω)eiω(x+ct)dω +

1

2

∫ ∞

−∞
F (ω)eiω(x−ct)dω

=
1

2
F−1[F ](x+ ct) +

1

2
F−1[F ](x− ct)

=
1

2

(
f(x+ ct) + f(x− ct)

)
Question 2 (Finite String Wave Equation). Consider the wave equation on a string of length L
with fixed ends: 

utt − c2uxx = 0 0 < x < L t > 0

u(x, 0) = f(x) f : (0, L) → R
ut(x, 0) = g(x) g : (0, L) → R
u(0, t) = 0

u(L, t) = 0

(2)

where c > 0.

-

6

x

t

x − ct = 0x + ct = L

region 1

region 2

region 3

region 4

(x0 + ct0, 0)(x0 − ct0, 0)
(2L − x0 − ct0, 0)

0 L

(x0, t0)
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Let
region 3 := {(x, t) : x ≤ L, x− ct ≥ 0 and x+ ct ≥ L}.

In this question, you will calculate the solution in region 3.

(a) [5 pts] First show that
u(x, t) = F (x− ct) +G(x+ ct)

solves the wave equation, utt − c2uxx = 0, for any twice differentiable functions F : (0, L) → R
and G : (0, L) → R.

Since ut(x, t) = −cF ′(x−ct)+cG′(x+ct), utt(x, t) = c2F ′′(x−ct)+c2G′′(x+ct), ux(x, t) =
F ′(x− ct) +G′(x+ ct) and uxx(x, t) = F ′′(x− ct) +G′′(x+ ct), we have that

utt − c2uxx = (c2F ′′ + c2G′′)− c2(F ′′ +G′′) = 0.

Using the initial conditions we can see that:

f(x) = u(x, 0) = F (x) +G(x)

g(x) = ut(x, 0) = −cF ′(x) + cG′(x)
(3)

(b) [5 pts] Use (3) to show that

−F (x) +G(x) =
1

c

∫ x

0

g(z) dz.

[HINT: You may assume that F (0) = G(0)]

∫ x

0

g(z)dz =

∫ x

0

−cF ′(z) + cG′(z)dz = c
[
− F (z) +G(z)

]x
0

= c
(
− F (x) +G(x) + F (0)−G(0)

)
= c(−F (x) +G(x)).

Therefore

−F (x) +G(x) =
1

c

∫ x

0

g(z) dz.

(c) [4 pts] Use (b) and (3) to show that

F (x) =
1

2
f(x)− 1

2c

∫ x

0

g(z) dz.

1

2
f(x)− 1

2c

∫ x

0

g(z) dz =
1

2

(
F (x) +G(x)

)
− 1

2

(
− F (x) +G(x)

)
= F (x).

(d) [4 pts] Next use (a) and (2) show that

G(L+ ct) = −F (L− ct).

and that
G(z) = −F (2L− z) for all z ≥ L.

0 = u(L, t) = F (L− ct) +G(L+ ct) =⇒ G(L+ ct) = −F (L− ct). 2

For all z ≥ L, let t = 1
c (z − L) ≥ 0. Then L+ ct = z and so

G(z) = G(L+ ct) = −F (L− ct) = −F (L− (z − L)) = −F (2L− z). 2
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(e) [7 pts] Use (a), (c) and (d) to show that the solution in region 3 is

u(x, t) =
f(x− ct)− f(2L− x− ct)

2
− 1

2c

∫ x−ct

0

g(ξ) dξ +
1

2c

∫ 2L−x−ct

0

g(ξ) dξ. (4)

u(x, t) = F (x− ct) +G(x+ ct)

= F (x− ct)− F (2L− (x+ ct))

=
1

2
f(x− ct)− 1

2c

∫ x+ct

0

g(z)dz − 1

2
f(2L− x− ct) +

1

2c

∫ 2L−x−ct

0

g(z)dz

=
f(x− ct)− f(2L− x− ct)

2
− 1

2c

∫ x−ct

0

g(ξ) dξ +
1

2c

∫ 2L−x−ct

0

g(ξ) dξ.

Question 3 (Characteristics). Consider the PDE

∂u

∂t
+ 2u

∂u

∂x
= 0 (5)

with the initial condition

u(x, 0) =

{
3 x < 2

1 x > 2.
(6)

(a) [3 pts] Replace (5) by a system of 2 ODEs

{
du
dt = 0
dx
dt = 2u

(b) [6 pts] Plot the characteristics (t against x) for this problem.

First ut = 0 =⇒ u(x(t), t) = u(x(0), 0) ∀t. Then dx
dt = 2u =⇒ x(t) = 2ut+ x(0). So

x(t) =

{
6t+ x(0) if x(0) < 2

2t+ x(0) if x(0) > 2.

-

6

1

2

3

1 2 3−1 0 4 5
x

t

(c) [1 pts] Does the problem have fan-like characteristics or shock wave characteristics?

� fan-like characteristics �X shock wave characteristics � neither

4



MAT 372 – K.T.D.D. Yarıyıl Sonu Sınavı Çözümleri

(d) [10 pts] Solve
∂u

∂t
+ 2u

∂u

∂x
= 0

subject to

u(x, 0) =

{
3 x < 2

1 x > 2.

At the discontinuity (x = 2), we have [u] = limx↘2 u(x, 0)− limx↗2 u(x, 0) = 1−3 = −2. Let

q(u) = u2. (Then dq
du = 2u.) Then [q] = limx↘2 q(u(x, 0))− limx↗2 1(u(x, 0)) = 12−32 = −8.

The shock characteristic is found by solving dxs

dt = [q]
[u] =

−8
−2 = 4. So xs(t) = 4t + xs(0) =

4t+ 2.
Therefore

u(x, t) =

{
3 if x < 4t+ 2

1 if x > 4t+ 2.

(e) [5 pts] Sketch the graph (u against x) of the solution at times t = 0, t = 1 and t = 2.

-

6

1

2

3

2 3 6 8 10 12

(t = 0)

-

6

1

2

3

2 3 6 8 10 12

(t = 1)

-

6

1

2

3

2 3 6 8 10 12

(t = 2)
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Question 4 (Separation of Variables). Consider the heat equation on a rod of length L:
ut = kuxx 0 < x < L, 0 < t

ux(0, t) = 0

ux(L, t) = 0

u(x, 0) = 7− cos 3πx
L .

(7)

(a) [5 pts] If u(x, t) = X(x)T (t), show that X and T satisfy

X ′′ + λX = 0 and T ′ + kλT = 0

for some constant λ ∈ R.

Since XT ′ − ut = kuxx = kX ′′T , we have that X′′(x)
X(x) = T ′(t)

kT (t) 2 . The left-hand side is a

function only of x; the right-hand side is a function only of t. Therefore both sides must
be equal to a constant; equal to −λ say 2 . Then X′′

X = −λ =⇒ X ′′ + λX = 0 and
T ′

kT = −λ =⇒ T ′ + kλT = 0 1 .

(b) [3 pts] What boundary conditions does X satisfy?

First note that 0 = ux(0, t) = X ′(0)T (t) and 0 = ux(L, t) = X ′(L)T (t). Since we don’t want

T (t) = 0 ∀t, we must have... optional {
X ′(0) = 0

X ′(L) = 0

(c) [10 pts] By considering the cases λ < 0, λ = 0 and λ > 0 separately, find all the eigenvalues
and eigenfunctions of

X ′′ + λX = 0

subject to the boundary conditions that you wrote in part (b).

CASE 1: λ < 0.
The solution of X ′′ + λX = 0 is X(x) = Ae

√
−λx + Be−

√
−λx. Then 0 = X ′(0) =

A
√
−λe0 −B

√
−λe0 =⇒ A = B and 0 = X ′(L) = A

√
−λ(e

√
−λL − e−

√
−λL) =⇒ A =

0 =⇒ B = 0. There are no eigenvalues or non-trivial eigenfunctions in this case. 2

CASE 2: λ = 0.
The solution of X ′′ = 0 is X(x) = Ax + B. Then 0 = X ′(0) = A and 0 = X ′(L) = A
=⇒ A = 0. We can choose any B we like. Therefore λ0 = 0 is an eigenvalue with
eigenfunction X0(x) = 1. 4

CASE 3: λ > 0.
The solution of X ′′ + λX = 0 is X(x) = A cos

√
λx + B sin

√
λx. So 0 = X ′(0) =

−A
√
λ sin

√
λ0 + B

√
λ cos

√
λ0 =⇒ B = 0; and 0 = X ′(L) = −A

√
λ sin

√
λL. Since

we don’t want A = 0, we must have that sin
√
λL = 0. So

√
λL = nπ, n = 1, 2, 3, . . .. So

λn =
(
nπ
L

)2
are eigenvalues with eigenfunctions Xn(x) = cos nπx

L . 4

(d) [4 pts] Find the general solution of
ut = kuxx 0 < x < L, 0 < t

ux(0, t) = 0

ux(L, t) = 0.

6
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The solution of T ′
n + kλnTn = 0 is Tn(t) = ane

−kλnt. So

u(x, t) = a0 +
∞∑

n=1

ane
−k(nπ

L )
2
t cos

nπx

L
.

(e) [3 pts] Now use the initial condition,

u(x, 0) = 7− cos
3πx

L
,

to write down the solution to equation (7).

Clearly a0 = 7, a3 = −1 and an = 0 for all other n. Therefore

u(x, t) = 7− e−k( 3π
L )

2
t cos

3πx

L
.

Question 5 (Fourier Series). Define the function f : [−1, 1] → R by

f(x) = x (8)

(a) [6 pts] Show that
{cosnπx : n ∈ N}

is an orthogonal system on [−1, 1] with respect to the weight function w(x) = 1.

Let n ̸= m. Since cos(A−B) + cos(A+B) = 2 cosA cosB,

⟨cosnπx, cosmπx⟩1 =

∫ 1

−1

cosnπx cosmπx dx

=
1

2

∫ 1

−1

cos(n−m)πx+ cos(n+m)πx dx

=
1

2

[
1

(n−m)π
sin(n−m)πx+

1

(n+m)π
sin(n+mπx

]1
−1

= 0

(b) [2 pts] Sketch f .

-

61

−1

1 2 3−1−2−3

(c) [5 pts] Sketch the Fourier Series of f .

-

61

−1

1 2 3−1−2−3
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(d) [12 pts] Calculate the coefficients (a0, ak and bk, for k = 1, 2, 3, . . .) of the Fourier Series of
f(x) = x.

First

a0 =
1

1

∫ 1

−1

f(x) dx =

∫ 1

−1

x dx = 0 3

because f(x) = x is an odd function. Similarly x cos kπx is an odd function, so

ak =

∫ 1

−1

x cos kπx dx = 0 ∀k ∈ N 3 .

Finally,

bk =

∫ 1

−1

x sin kπx dx

=

[
−x cos kπx

kπ

]1
−1

+

∫ 1

−1

cos kπx

kπ
dx (integration by parts)

=

[
−x cos kπx

kπ
+

sin kπx

k2π2

]1
−1

= −cos kπ

kπ
+ 0− (−1) cos kπ(−1)

kπ
− 0

=
−2 cos kπ

kπ

=
−2

kπ
(−1)k. 6
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