Question 1 (Fourier Transforms). Consider the Wave Equation:

$$
\left\{\begin{array}{l}
u_{t t}-c^{2} u_{x x}=0 \quad-\infty<x<\infty, \quad 0<t<\infty \tag{1}\\
u(x, 0)=f(x) \\
u_{t}(x, 0)=0
\end{array}\right.
$$

(a) [5 pts] If \mathcal{F} denotes the Fourier Transform operator with respect to x, show that

$$
\mathcal{F}\left[\frac{\partial u}{\partial t}\right]=\frac{\partial}{\partial t} \mathcal{F}[u] \quad \text { and } \quad \mathcal{F}\left[\frac{\partial u}{\partial x}\right]=i \omega \mathcal{F}[u] .
$$

$$
\mathcal{F}\left[\frac{\partial u}{\partial t}\right](\omega, t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\partial u}{\partial t}(x, t) e^{-i \omega x} d x=\frac{\partial}{\partial t}\left(\frac{1}{2 \pi} \int_{-\infty}^{\infty} u(x, t) e^{-i \omega x} d x\right)=\frac{\partial}{\partial t} \mathcal{F}[u](\omega, t)
$$

and

$$
\begin{aligned}
\mathcal{F}\left[\frac{\partial u}{\partial x}\right](\omega, t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\partial u}{\partial x}(x, t) e^{-i \omega x} d x=-\frac{1}{2 \pi} \int_{-\infty}^{\infty} u(x, t) \frac{\partial}{\partial x}\left(e^{-i \omega x}\right) d x \\
& =\frac{i \omega}{2 \pi} \int_{-\infty}^{\infty} u(x, t) e^{-i \omega x} d x=i \omega \mathcal{F}[u](\omega, t)
\end{aligned}
$$

by integration by parts.
(b) [2 pts] Deduce that

$$
\mathcal{F}\left[\frac{\partial^{2} u}{\partial t^{2}}\right]=\frac{\partial^{2}}{\partial t^{2}} \mathcal{F}[u] \quad \text { and } \quad \mathcal{F}\left[\frac{\partial^{2} u}{\partial x^{2}}\right]=-\omega^{2} \mathcal{F}[u]
$$

$$
\mathcal{F}\left[\frac{\partial^{2} u}{\partial t^{2}}\right]=\frac{\partial}{\partial t} \mathcal{F}\left[\frac{\partial u}{\partial t}\right]=\frac{\partial^{2}}{\partial t^{2}} \mathcal{F}[u],
$$

and

$$
\mathcal{F}\left[\frac{\partial^{2} u}{\partial x^{2}}\right]=i \omega \mathcal{F}\left[\frac{\partial u}{\partial x}\right]=(i \omega)^{2} \mathcal{F}[u]=-\omega^{2} \mathcal{F}[u]
$$

(c) [5 pts] Let $U=\mathcal{F}[u]$ and $F=\mathcal{F}[f]$. Use the formulae in part (b) to take Fourier Transforms of equation (1).

$$
\left\{\begin{array}{l}
U_{t t}+c^{2} \omega^{2} U=0 \\
U(\omega, 0)=F(\omega) \\
U_{t}(\omega, 0)=0
\end{array}\right.
$$

(d) [5 pts] Solve the boundary value problem for U [that you wrote in part (c)] and show that

$$
U(\omega, t)=\frac{1}{2} F(\omega)\left(e^{i c \omega t}+e^{-i c \omega t}\right) .
$$

[HINT: $\cos z=\frac{1}{2}\left(e^{i z}+e^{-i z}\right)$]
The general solution of $U_{t t}+c^{2} \omega^{2} U=0$ is $\left.U(\omega, t)=A(\omega) \cos c \omega t+B(\omega) \sin c \omega t\right)$.
Then

$$
0=U_{t}(\omega, t)=-c \omega A(\omega) \sin c \omega 0+c \omega B(\omega) \cos c \omega 0=-c \omega B(\omega) \Longrightarrow B(\omega)=0 \forall \omega \in \mathbb{R}
$$ and

$$
F(\omega)=U(\omega, 0)=A(\omega) \cos c \omega 0=A(\omega)
$$

So

$$
U(\omega, t)=F(\omega) \cos c \omega t=F(\omega)\left(\frac{e^{i c \omega t}+e^{-i c \omega t}}{2}\right) .
$$

(e) $[8 \mathrm{pts}]$ Use the Inverse Fourier Transform, \mathcal{F}^{-1}, to show that

$$
u(x, t)=\frac{1}{2}(f(x+c t)+f(x-c t)) .
$$

$$
\begin{aligned}
u(x, t) & =\mathcal{F}^{-1}[U](x, t) \\
& =\int_{-\infty}^{\infty} U(\omega, t) e^{i \omega x} d \omega \\
& =\frac{1}{2} \int_{-\infty}^{\infty} F(\omega)\left(e^{i c \omega t}+e^{-i c \omega t}\right) e^{i \omega x} d \omega \\
& =\frac{1}{2} \int_{-\infty}^{\infty} F(\omega) e^{i \omega(x+c t)} d \omega+\frac{1}{2} \int_{-\infty}^{\infty} F(\omega) e^{i \omega(x-c t)} d \omega \\
& =\frac{1}{2} \mathcal{F}^{-1}[F](x+c t)+\frac{1}{2} \mathcal{F}^{-1}[F](x-c t) \\
& =\frac{1}{2}(f(x+c t)+f(x-c t))
\end{aligned}
$$

Question 2 (Finite String Wave Equation). Consider the wave equation on a string of length L with fixed ends:

$$
\begin{cases}u_{t t}-c^{2} u_{x x}=0 & 0<x<L \quad t>0 \tag{2}\\ u(x, 0)=f(x) & f:(0, L) \rightarrow \mathbb{R} \\ u_{t}(x, 0)=g(x) & g:(0, L) \rightarrow \mathbb{R} \\ u(0, t)=0 & \\ u(L, t)=0 & t\end{cases}
$$

where $c>0$.

Let

$$
\text { region } 3:=\{(x, t): x \leq L, x-c t \geq 0 \text { and } x+c t \geq L\} .
$$

In this question, you will calculate the solution in region 3.
(a) [5 pts] First show that

$$
u(x, t)=F(x-c t)+G(x+c t)
$$

solves the wave equation, $u_{t t}-c^{2} u_{x x}=0$, for any twice differentiable functions $F:(0, L) \rightarrow \mathbb{R}$ and $G:(0, L) \rightarrow \mathbb{R}$.

Since $u_{t}(x, t)=-c F^{\prime}(x-c t)+c G^{\prime}(x+c t), u_{t t}(x, t)=c^{2} F^{\prime \prime}(x-c t)+c^{2} G^{\prime \prime}(x+c t), u_{x}(x, t)=$ $F^{\prime}(x-c t)+G^{\prime}(x+c t)$ and $u_{x x}(x, t)=F^{\prime \prime}(x-c t)+G^{\prime \prime}(x+c t)$, we have that

$$
u_{t t}-c^{2} u_{x x}=\left(c^{2} F^{\prime \prime}+c^{2} G^{\prime \prime}\right)-c^{2}\left(F^{\prime \prime}+G^{\prime \prime}\right)=0
$$

Using the initial conditions we can see that:

$$
\begin{align*}
f(x) & =u(x, 0)=F(x)+G(x) \\
g(x) & =u_{t}(x, 0)=-c F^{\prime}(x)+c G^{\prime}(x) \tag{3}
\end{align*}
$$

(b) [5 pts] Use (3) to show that

$$
-F(x)+G(x)=\frac{1}{c} \int_{0}^{x} g(z) d z
$$

[HINT: You may assume that $F(0)=G(0)$]

$$
\begin{aligned}
\int_{0}^{x} g(z) d z & =\int_{0}^{x}-c F^{\prime}(z)+c G^{\prime}(z) d z=c[-F(z)+G(z)]_{0}^{x} \\
& =c(-F(x)+G(x)+F(0)-G(0))=c(-F(x)+G(x)) .
\end{aligned}
$$

Therefore

$$
-F(x)+G(x)=\frac{1}{c} \int_{0}^{x} g(z) d z
$$

(c) [4 pts] Use (b) and (3) to show that

$$
F(x)=\frac{1}{2} f(x)-\frac{1}{2 c} \int_{0}^{x} g(z) d z
$$

$$
\frac{1}{2} f(x)-\frac{1}{2 c} \int_{0}^{x} g(z) d z=\frac{1}{2}(F(x)+G(x))-\frac{1}{2}(-F(x)+G(x))=F(x)
$$

(d) $[4 \mathrm{pts}]$ Next use (a) and (2) show that

$$
G(L+c t)=-F(L-c t)
$$

and that

$$
G(z)=-F(2 L-z) \quad \text { for all } z \geq L
$$

$$
0=u(L, t)=F(L-c t)+G(L+c t) \Longrightarrow G(L+c t)=-F(L-c t) .2
$$

For all $z \geq L$, let $t=\frac{1}{c}(z-L) \geq 0$. Then $L+c t=z$ and so

$$
G(z)=G(L+c t)=-F(L-c t)=-F(L-(z-L))=-F(2 L-z) \cdot 2
$$

(e) [7 pts] Use (a), (c) and (d) to show that the solution in region 3 is

$$
\begin{equation*}
u(x, t)=\frac{f(x-c t)-f(2 L-x-c t)}{2}-\frac{1}{2 c} \int_{0}^{x-c t} g(\xi) d \xi+\frac{1}{2 c} \int_{0}^{2 L-x-c t} g(\xi) d \xi \tag{4}
\end{equation*}
$$

$$
\begin{aligned}
u(x, t) & =F(x-c t)+G(x+c t) \\
& =F(x-c t)-F(2 L-(x+c t)) \\
& =\frac{1}{2} f(x-c t)-\frac{1}{2 c} \int_{0}^{x+c t} g(z) d z-\frac{1}{2} f(2 L-x-c t)+\frac{1}{2 c} \int_{0}^{2 L-x-c t} g(z) d z \\
& =\frac{f(x-c t)-f(2 L-x-c t)}{2}-\frac{1}{2 c} \int_{0}^{x-c t} g(\xi) d \xi+\frac{1}{2 c} \int_{0}^{2 L-x-c t} g(\xi) d \xi
\end{aligned}
$$

Question 3 (Characteristics). Consider the PDE

$$
\begin{equation*}
\frac{\partial u}{\partial t}+2 u \frac{\partial u}{\partial x}=0 \tag{5}
\end{equation*}
$$

with the initial condition

$$
u(x, 0)= \begin{cases}3 & x<2 \tag{6}\\ 1 & x>2\end{cases}
$$

(a) [3 pts] Replace (5) by a system of 2 ODEs

$$
\left\{\begin{array}{l}
\frac{d u}{d t}=0 \\
\frac{d x}{d t}=2 u
\end{array}\right.
$$

(b) [6 pts] Plot the characteristics (t against $x)$ for this problem.

(c) $[1 \mathrm{pts}]$ Does the problem have fan-like characteristics or shock wave characteristics?
\square fan-like characteristics $\quad \square$ shock wave characteristics $\quad \square$ neither
(d) $[10 \mathrm{pts}]$ Solve

$$
\frac{\partial u}{\partial t}+2 u \frac{\partial u}{\partial x}=0
$$

subject to

$$
u(x, 0)= \begin{cases}3 & x<2 \\ 1 & x>2\end{cases}
$$

At the discontinuity $(x=2)$, we have $[u]=\lim _{x \backslash 2} u(x, 0)-\lim _{x \nearrow_{2}} u(x, 0)=1-3=-2$. Let $q(u)=u^{2}$. (Then $\frac{d q}{d u}=2 u$.) Then $[q]=\lim _{x \searrow 2} q(u(x, 0))-\lim _{x \nearrow_{2}} 1(u(x, 0))=1^{2}-3^{2}=-8$. The shock characteristic is found by solving $\frac{d x_{s}}{d t}=\frac{[q]}{[u]}=\frac{-8}{-2}=4$. So $x_{s}(t)=4 t+x_{s}(0)=$ $4 t+2$.
Therefore

$$
u(x, t)= \begin{cases}3 & \text { if } x<4 t+2 \\ 1 & \text { if } x>4 t+2\end{cases}
$$

(e) $[5 \mathrm{pts}]$ Sketch the graph (u against x) of the solution at times $t=0, t=1$ and $t=2$.

Question 4 (Separation of Variables). Consider the heat equation on a rod of length L :

$$
\left\{\begin{array}{l}
u_{t}=k u_{x x} \quad 0<x<L, \quad 0<t \tag{7}\\
u_{x}(0, t)=0 \\
u_{x}(L, t)=0 \\
u(x, 0)=7-\cos \frac{3 \pi x}{L} .
\end{array}\right.
$$

(a) [5 pts] If $u(x, t)=X(x) T(t)$, show that X and T satisfy

$$
X^{\prime \prime}+\lambda X=0 \quad \text { and } \quad T^{\prime}+k \lambda T=0
$$

for some constant $\lambda \in \mathbb{R}$.
Since $X T^{\prime}-u_{t}=k u_{x x}=k X^{\prime \prime} T$, we have that $\frac{X^{\prime \prime}(x)}{X(x)}=\frac{T^{\prime}(t)}{k T(t)} 2$. The left-hand side is a function only of x; the right-hand side is a function only of t. Therefore both sides must be equal to a constant; equal to $-\lambda$ say 2 . Then $\frac{X^{\prime \prime}}{X}=-\lambda \quad \Longrightarrow \quad X^{\prime \prime}+\lambda X=0$ and $\frac{T^{\prime}}{k T}=-\lambda \Longrightarrow T^{\prime}+k \lambda T=0 \boxed{1}$.
(b) [3 pts] What boundary conditions does X satisfy?

First note that $0=u_{x}(0, t)=X^{\prime}(0) T(t)$ and $0=u_{x}(L, t)=X^{\prime}(L) T(t)$. Since we don't want $T(t)=0 \forall t$, we must have... optional

$$
\left\{\begin{array}{l}
X^{\prime}(0)=0 \\
X^{\prime}(L)=0
\end{array}\right.
$$

(c) [10 pts] By considering the cases $\lambda<0, \lambda=0$ and $\lambda>0$ separately, find all the eigenvalues and eigenfunctions of

$$
X^{\prime \prime}+\lambda X=0
$$

subject to the boundary conditions that you wrote in part (b).
CASE 1: $\lambda<0$.
The solution of $X^{\prime \prime}+\lambda X=0$ is $X(x)=A e^{\sqrt{-\lambda} x}+B e^{-\sqrt{-\lambda} x}$. Then $0=X^{\prime}(0)=$ $A \sqrt{-\lambda} e^{0}-B \sqrt{-\lambda} e^{0} \quad \Longrightarrow A=B$ and $0=X^{\prime}(L)=A \sqrt{-\lambda}\left(e^{\sqrt{-\lambda} L}-e^{-\sqrt{-\lambda} L}\right) \quad \Longrightarrow A=$ $0 \Longrightarrow B=0$. There are no eigenvalues or non-trivial eigenfunctions in this case. 2

CASE 2: $\lambda=0$.
The solution of $X^{\prime \prime}=0$ is $X(x)=A x+B$. Then $0=X^{\prime}(0)=A$ and $0=X^{\prime}(L)=A$ $\Longrightarrow \quad A=0$. We can choose any B we like. Therefore $\lambda_{0}=0$ is an eigenvalue with eigenfunction $X_{0}(x)=1$.

CASE 3: $\lambda>0$.
The solution of $X^{\prime \prime}+\lambda X=0$ is $X(x)=A \cos \sqrt{\lambda} x+B \sin \sqrt{\lambda} x$. So $0=X^{\prime}(0)=$ $-A \sqrt{\lambda} \sin \sqrt{\lambda} 0+B \sqrt{\lambda} \cos \sqrt{\lambda} 0 \quad \Longrightarrow \quad B=0$; and $0=X^{\prime}(L)=-A \sqrt{\lambda} \sin \sqrt{\lambda} L$. Since we don't want $A=0$, we must have that $\sin \sqrt{\lambda} L=0$. So $\sqrt{\lambda} L=n \pi, n=1,2,3, \ldots$. So $\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}$ are eigenvalues with eigenfunctions $X_{n}(x)=\cos \frac{n \pi x}{L}$. 4
(d) $[4 \mathrm{pts}]$ Find the general solution of

$$
\left\{\begin{array}{l}
u_{t}=k u_{x x} \\
u_{x}(0, t)=0 \\
u_{x}(L, t)=0
\end{array}\right.
$$

The solution of $T_{n}^{\prime}+k \lambda_{n} T_{n}=0$ is $T_{n}(t)=a_{n} e^{-k \lambda_{n} t}$. So

$$
u(x, t)=a_{0}+\sum_{n=1}^{\infty} a_{n} e^{-k\left(\frac{n \pi}{L}\right)^{2} t} \cos \frac{n \pi x}{L}
$$

(e) $[3 \mathrm{pts}]$ Now use the initial condition,

$$
u(x, 0)=7-\cos \frac{3 \pi x}{L}
$$

to write down the solution to equation (7).
Clearly $a_{0}=7, a_{3}=-1$ and $a_{n}=0$ for all other n. Therefore

$$
u(x, t)=7-e^{-k\left(\frac{3 \pi}{L}\right)^{2} t} \cos \frac{3 \pi x}{L} .
$$

Question 5 (Fourier Series). Define the function $f:[-1,1] \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
f(x)=x \tag{8}
\end{equation*}
$$

(a) $[6$ pts $]$ Show that

$$
\{\cos n \pi x: n \in \mathbb{N}\}
$$

is an orthogonal system on $[-1,1]$ with respect to the weight function $w(x)=1$.
Let $n \neq m$. Since $\cos (A-B)+\cos (A+B)=2 \cos A \cos B$,

$$
\begin{aligned}
\langle\cos n \pi x, \cos m \pi x\rangle_{1} & =\int_{-1}^{1} \cos n \pi x \cos m \pi x d x \\
& =\frac{1}{2} \int_{-1}^{1} \cos (n-m) \pi x+\cos (n+m) \pi x d x \\
& =\frac{1}{2}\left[\frac{1}{(n-m) \pi} \sin (n-m) \pi x+\frac{1}{(n+m) \pi} \sin (n+m \pi x]_{-1}^{1}\right. \\
& =0
\end{aligned}
$$

(b) [2 pts] Sketch f.

(c) $[5 \mathrm{pts}]$ Sketch the Fourier Series of f.

(d) [12 pts] Calculate the coefficients $\left(a_{0}, a_{k}\right.$ and b_{k}, for $\left.k=1,2,3, \ldots\right)$ of the Fourier Series of $f(x)=x$

First

$$
a_{0}=\frac{1}{1} \int_{-1}^{1} f(x) d x=\int_{-1}^{1} x d x=0 \boxed{3}
$$

because $f(x)=x$ is an odd function. Similarly $x \cos k \pi x$ is an odd function, so

$$
a_{k}=\int_{-1}^{1} x \cos k \pi x d x=0 \forall k \in \mathbb{N} 3 .
$$

Finally,

$$
\begin{aligned}
b_{k} & =\int_{-1}^{1} x \sin k \pi x d x \\
& =\left[\frac{-x \cos k \pi x}{k \pi}\right]_{-1}^{1}+\int_{-1}^{1} \frac{\cos k \pi x}{k \pi} d x \quad \text { (integration by parts) } \\
& =\left[\frac{-x \cos k \pi x}{k \pi}+\frac{\sin k \pi x}{k^{2} \pi^{2}}\right]_{-1}^{1} \\
& =-\frac{\cos k \pi}{k \pi}+0-\frac{(-1) \cos k \pi(-1)}{k \pi}-0 \\
& =\frac{-2 \cos k \pi}{k \pi} \\
& =\frac{-2}{k \pi}(-1)^{k} \cdot 6
\end{aligned}
$$

